Белорусский государственный университет информатики и радиоэлектроники

Направления научных и прикладных исследований

- Компьютерное проектирование технологии/прибора/схемы/системы
- Квантово-динамическое и молекулярно-динамическое моделирование свойств перспективных материалов и структур
- Моделирование и оптимизация технологических процессов (микробиология)
- Информационные и интернет технологии в образовании и научных исследованиях

Используемые программные средства

 Silvaco, Cadence
 VASP, HyperChem, NwChem, Ecce
 Python (PyQT, NumPy, SciPy), Scilab, Mathematica

Php, MySQL, JavaScript, SCORM

Расчеты из первых принципов (ab-initio)

Использование фундаментальных законов физики

Набор "принятых" приближений для численного решения соответствующих уравнений

Отсутствие эмпирических приближений

Моделирование атомных конфигураций

Основные подходы:

моделируемый объект (твердое тело) представляется как механическая система – методы молекулярной динамики и молекулярной механики;

моделируемый объект твердое тело представляется как квантовохимическая система – методы квантовой химии.

Расчет функционала плотности (DFT)

 \square

Точно прогнозируемые структурные и динамические свойства материала

Программные средства моделирования физических свойств кристаллов из первых принципов

Области применения:

- квантовые вычисления
- квантовый детектор

Фото-изомеризация ретинала

Экспериментальные исследования показали: внесение в питательную среду порошкообразного пористого кремния в концентрациях 0,001-0,1% приводит к увеличению концентрации клеток бактерий на 32-56% и спор – на 38-88%, не оказывая влияния на их антимикробную активность; при использовании пористых материалов в качестве носителей для посевного материала, концентрация спор полученного указанным способом биопрепарата составляет 1,3×10⁹/мл, что на 32% выше, чем с обычным посевным материалом.

Бактерии *Bacillus subtilis* на поверхности пористого кремния (изображение получено ACM)

Построена сетчатая структура однослойного муреина 4×4 (16 молекул пептидогликана). При расчете минимума энергии слой изогнулся под небольшим углом, что свидетельствует о пластичности слоя.

- Рассмотрены два механизма образования новой связи кислорода с подложкой: С-О-Н-Si и C-O-Si, причем в первом случае вероятно образование водородной связи;
- Моделирование в программе NWChem осуществлялось с использованием метода SCF.
- Для атомов, участвующих во взаимодействиях использовался базис 6-31G*, для остальных – 3-21G.

- Результаты вычислений показали, что при взаимодействии клеточной фрагмента стенки с поверхностью кремния по механизму C-O-Si, как и предсказывалось, может образовываться ковалентная связь Si-O, длиной ~ 0.17 нм;
- Взаимодействие по механизму C-O-H-Si не приводит ни к образованию ковалентной связи, ни к образованию водородной связи;
- Из полученных результатов можно сделать вывод, что бактерия будет иммобилизоваться посредством образования химических связей на кремниевой подложке, поверхность которой очищена от водорода.

2. Система SiO₂ на углеродной нанотрубке (УНТ) как элемент нано МОПтранзистора

Система SiO₂ на углеродной нанотрубке (УНТ) как элемент нано МОП-транзистора

Взаимодействие между углеродной нанотрубкой и монослоем SiO₂

Облако колец Si₆O₁₈ вокруг углеродной нанотрубки

Цепочки Si_nO_{3n} и углеродная нанотрубка

Моделирование электронных и магнитных свойств ZnO

- Наностержни
- Сферические наночастицы
- Пластинки

- Тетраподы
- Цветкообразные структуры
- Гексогональные пластинки

1-й Азербайджано-Белорусская международная конференция – Баку, Азербайджан, 21-22 октября

Соодинонио	Пос	тоянная ре	шетки
Соединение	a, Å	b, Å	c, Å
7-0	2.240	2 2 4 0	E 007
ZnO	3,249	3,249	5,207

ZnO:X_{0,78}

ZnO:X_{1,56}

Результаты – распределения электронной плотности и намагниченности насыщения

ZnO:Mn_{2,34}

Результаты – структура суперячеек и распределения электронной плотности

Вакансия цинка

Внедрение кислорода

Результаты моделирования границы зерна

Модель границы зерна после процесса релаксации

конфигураций дефектов сложившихся случайным образом на границе зерна.

5. Графен (G) с вакансионным кластером (nV)

Область применения: - приборы спинтроники

Графен (G) с вакансионным кластером (nV). Результаты моделирования

Зарядовые плотности и плотности электронных состояний для комплекса (G+2V)

Графен (G) с вакансионным кластером (nV). Результаты моделирования

Зарядовые плотности и плотности электронных состояний для комплекса (G+6V)

Графен (G) с вакансионным кластером (nV)

Тип вакансионного кластера	Число вакансий в кластере	Наличие магнитного момента	Магнитный момент, µВ
V2	2	—	0
V3	3	+	1.05
V4_1	4	+	2.02
V4_2	4	+	1.98
V4_3	4	—	0
V5	5	+	3.28
V6_1 (зародыш дислокации вакансионного кластера)	6	+	4.50
V6_2	6	+	5.49

Соединения TIMeX₂ (Me=In,Ga; X= S, Se, Te)

Области применения:

- MEMC,
- солнечные элементы,
- сенсоры,
- датчики.

Электромеханические свойства системы TIMeX₂ (Me=In,Ga; X= S, Se, Te)

Зависимость спиновой поляризации от деформации сжатия и растяжения вдоль оси X или Y (слева), при всестороннем сжатии и растяжении (справа) для соединений TIMeX₂

Халькогениды переходных металлов V группы

- Переходные металлы IV- V группы
- Халькоген S, Se, Te
 Свойства:
- Полупроводники и полуметаллы
- Магнетизм (в полуметаллах)
- Волна зарядовой плотности
- Суперпроводимость Получение:
- Гидротермальный синтез
- Низкотемпературный синтез в среде алканов
- Механическое отшелушивание
- Химическое осаждение газовой фазы

н		-		MX ₂	aneitio	metal											
Li	Be			X = Cł	nalcoge	n						в	С	Ν	0	F	
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	s	CI	
к	Ca	Sc	ті	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	
Cs	Ва	La - Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Po	At	
Fr	Ra	Ac - Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	ı

ЧЦП Результаты моделирования MoS₂

- Ширина запрещенной зоны 1,72 эВ
- Наличие прямозонного перехода
- Отсутствие магнитных свойств

Результаты моделирования MoS₂

Проекция кристаллографической структуры TIGaS₂ с вакансионным кластером

Размер вакансионного кластера, кол-во атомов	Е _g , эВ	Е _{спин} ,%
1	1.581	3.455
2	1.580	3.456
3	1.586	3.456
4	1.586	6.911
5	1.574	10.366
6	1.612	12.093

Magnetic Random Access Memory (MRAM)

ICARUS (IC Technology Statistical Analysis based on RSM Methodology and ManUfacturability DeSign)

Paran	ieter	Type	Min. value	Avr. value	Max, value	Deviation, 3
Repi		input	6.700E-01	1.173E+00	2.000E+00	56
Dtr		input	1.500E+00	1.629E+00	1.700E+00	6.1
Depi		input	7.000E+00	7.800E+00	9.000E+00	12.
Dpbody		input	1.800E+13	1.926E+13	2.000E+13	5.1
5		input	2.528E+00	1.045E+01	2.700E+01	117
VBdss		output	6.553E+01	8.920E+01	1.277E+02	34.
Monte-Carlo loo	p	100000	3.775E+01	1.049E+02	1.891E+02	72.
Regression over	view					
Description		Value				
Residual error		8.385E-02				
Coefficient of d	etermination	1.000E+00				
Adjusted coeff.	of determinat	1.000E+00				
Relative averag	e residual, in p	6.448E-02				
Relative maximu	im residual, in	1.879E-01				
Variance ratio		2.098E+05				

View	Analysis ⊆hart	?				
	Real value	Appr. value	Residual	Residual, %	Std. resid.	_
1	6.553E+01	6.641E+01	-8.821E-01	-1.346E+00	-4.842E-01	
2	6.850E+01	7.199E+01	-3.494E+00	-5.101E+00	-1.918E+00	
3	7.019E+01	6.790E+01	2.291E+00	3.264E+00	1.258E+00	
4	6.928E+01	6.794E+01	1.344E+00	1.940E+00	7.376E-01	
5	7.332E+01	7.352E+01	-1.985E-01	-2.707E-01	-1.089E-01	
6	8.984E+01	8.944E+01	4.019E-01	4.474E-01	2.206E-01	
7	8.889E+01	8.948E+01	-5.854E-01	-6.585E-01	-3.213E-01	
8	9.667E+01	9.502E+01	1.650E+00	1.707E+00	9.055E-01	
9	1.172E+02	1.193E+02	-2.181E+00	-1.862E+00	-1.197E+00	
10	1.189E+02	1.194E+02	-5.084E-01	-4.277E-01	-2.791E-01	
11	1.269E+02	1.249E+02	1.977E+00	1.558E+00	1.085E+00	
12	6.573E+01	6.656E+01	-8.296E-01	-1.262E+00	-4.554E-01	
13	6.873E+01	7.214E+01	-3.412E+00	-4.964E+00	-1.873E+00	
14	7.036E+01	6.805E+01	2.313E+00	3.288E+00	1.270E+00	
15	6.953E+01	6.808E+01	1.446E+00	2.080E+00	7.938E-01	
16	7.347E+01	7.367E+01	-1.961E-01	-2.668E-01	-1.076E-01	
17	9.006E+01	8.959E+01	4.743E-01	5.267E-01	2.604E-01	
18	8.895E+01	8.962E+01	-6.729E-01	-7.565E-01	-3.694E-01	
19	9.701E+01	9.517E+01	1.842E+00	1.899E+00	1.011E+00	
20	1.174E+02	1.195E+02	-2.069E+00	-1.762E+00	-1.136E+00	
	Good 📃 Nor	mal 📃 Eno	ugh 📃 Bad			
Globa	al overview Prei	iminary analysis	Polynom coeffi	ient Approxima	ation result	

~	Design of Ex Please, seler	cperiment select ct one of Design of	tion Experiment			7.51
elect plan	Full Factor plan	✓ ^{Sele}	ct plan view Norma	lized	~	Copy to clipboard
	dose (0026-1)	temp (0036-1)	energy (0038-2)	temp (0048-1)	time (0036	-0)
5tep 000	1.0	1.0	1.0	1.0	1.0	
5tep 001	-1.0	1.0	1.0	1.0		
5tep 002	1.0	-1.0	1.0	1.0		
5tep 003	-1.0	-1.0	1.0	1.0		
5tep 004	1.0	1.0	-1.0	1.0		
5tep 005	-1.0	1.0	-1.0	1.0		
	1.0	1.0	1.0	1.0	1.0	×
Full factor A design in design. A c called `higl input factor if there are	rial designs which every settir common experime h' and `low' or `+1 rs is called a full fa k factors, each at	ng of every factor : ntal design is one L' and `-1', respect ictorial design in tv : 2 levels, a full fac	appears with every s with all input factors ively. A design with a vo levels. torial design has 2 ^k r	etting of every oth set at two levels e Il possible high/lov uns.	er factor is a f ach. These le r combination	full factorial vels are s of all the
	Number	of Factors		Numbe	r of Runs	
		2			4	
		3			8	

Finish

<- Previous

Высокотемпературный диод Шоттки

Определение границ тепловой устойчивости диода Шоттки в диапазоне указанных параметров эпитаксиального слоя и высоты барьера Шоттки при номинальном обратном напряжении.

Materials:

Aluminum

Silicon

Высокотемпературный диод Шоттки

ВАХ диода Шоттки при температуре 27 °C

Распределение напряженности электрического поля в структуре диода Шоттки при напряжении на катоде 18 В

Моделирование воздействия ионизирующего излучения на характеристики МОП-транзистора

Полевой транзистор под воздействием отдельной ядерной частицы

Распределение концентрации дырок в структуре мощного МОП-транзистора в момент времени t = 0 c (a), t = $5 \cdot 10^{-12}$ c (б), t = $50 \cdot 10^{-12}$ c (в), t = $150 \cdot 10^{-12}$ c (г)

Моделирование воздействия ионизирующего излучения на характеристики МОП-транзистора

Моделирование воздействия ионизирующего излучения на характеристики МОП-транзистора

Динамика изменения тока стока при воздействии частицы с линейной передачей энергии равной 37,2 МэВ·см²/мг, проходящей в центре устройства (x = 0). В момент удара напряжение на затворе равно -13,9 В, на коллекторе 30В.

Моделирование TSV-структур

Динамика изменения тока стока при воздействии частицы с линейной передачей энергии равной 37,2 МэВ·см²/мг, проходящей в центре устройства (х = 0). В момент удара напряжение

на затворе равно -13,9 В, на коллекторе 30В.

Моделирование TSV-структур

- TSV формировались в объеме кремния размерами 10 мкм x 10 мкм x 5 мкм.
- На подложку осаждался нитрид кремния толщиной 0,1 мкм.
- В осажденном слое нитрида кремния создается маска для последующей операции травления.

Моделирование TSV-структур

Образовательные модули на основе технологии SCORM

E-RUDIT (Educational RUDder via Internet Technology)

 $\overline{\mathbf{A}}$ СОДЕ

> Препо Стем доб

троники

ГЛАВНАЯ НОВОС	СТИ БЛОГ О СИСТЕМ	е контакты		
E-RUDIT	еда для организации и ко	троля качества учебного процесса»		
Меню	Осис	теме		
Новости		Программно-аппаратный комплекс		
о Системе		E-RUDIT (<u>E</u> ducational <u>RUD</u> der via <u>I</u> nternet <u>T</u> echnology)		
Контакты	«Инт процесса»	ернет-среда для организации и контроля качества учебного		
Вход на сайт	Комп	екс предназначен:		
Ваш логин:	1 E-RUD	т	ПРОФИЛЬ	ROOT
Ваш пароль:	СОДЕРЖАНИЕ САЙТА СТРУКТУРА ВРЕМЯ З	КУРСЫ РАСПИСАНИЕ КОНТРОЛЬ БЛОГ ПОЛЬЗОВАТЕЛИ ДОСТУП	НАСТРО	йки
Войти	меню	□ ТИП НАЗВАНИЕ ▼ СОКР.	КОД РЕД.	удалить
	ДОБАВИТЬ СПЕЦЬНОСТЬ	Начало / Радиоэлектроники / Микро- и наноэлектроники		
		Специальность Квантовые Информационные Системы КИС	270	
	поиск	Специальность Микро- и наноэлектроники МНЭ	030 📝	
		2 M3 2		
L				

E CANTA	КУРСЫ Р	АСПИСАНИЕ	KOH	гроль	ыю	польз	ВОВАТЕЛИ	досту						
РАСПИСА	АНИЕ													
	ДЕНЬ	неделя	11		НЕДЕЛЯ 2		недел	13		НЕДЕЛЯ 4				
3. P. 🔽	ПОНЕДЕЛЬНИК	8:00-9:35 - ИТ (Лекции) Группы: 740301, Аудитория: 119-	аПИМ 740302 1 Ш											
	вторник	11:40-13:15 - ¥ (Практические Группы: 542701 13:25-15:00 - ¥ (Практические Группы: 542701	твпим) Пвпим))											
C(одержание с	RUDIT :айта кур	сы	РАСПИС	АНИЕ	КОНТРО	ль бло	г поль	30BAT	ели Д	цосту	пр П НА	офиль СТРОІ	ROC вых
СС	одержание с	RUDIT :айта куг	РСЫ ИП ВСЕ	РАСПИС	АНИЕ	КОНТРО АНИЕ —	ль бло	Г ПОЛЬ ПРЕПОДА	оЗОВАТ ВАТЕЛИ	ЕЛИ Д	цостуі часы	пр П НА ФАЙЛЫ	офиль СТРОІ РЕД.	ВЫХ ВЫХ ЙКИ УДАЛИТ
	СДЕРЖАНИЕ С СДЕРЖАНИЕ С ЕНЮ НОВЫЙ ДОБАВИТЬ		СЫ I ИП ВСЕ	РАСПИС	АНИЕ НАЗВ Инфо техно. проек интег	КОНТРО АНИЕ - рмационны логии в тировании ральных м	ЛЬ БЛО	Г ПОЛЕ ПРЕПОДА Стемпицки Нелаев В	30ВАТ ВАТЕЛИ ИЙ В. Р., . В .	ЕЛИ , группы 740301 740302	цосту часы 50	пр П НА ФАЙЛЫ <u>1</u> 9	офиль СТРОІ РЕД.	КО Вых Удалит
	СССРЕДСТВИИ СОДЕРЖАНИЕ С ЕНКО НОВЫЙ ДОБАВИТЬ УДАЛИТЬ	ANTA KY	ип все Лекци	РАСПИС и заторные	назв. Инфо техно. проек Интел Инфо техно. проек Интел	КОНТРО Ание • риационне погии в тировании ральных ми риационне погии в таровании ральных ми	ль БЛО	ПОЛЕ ПРЕПОДА Стемпицки Стемпицки	аЗОВАТ ватели ий В. Р., . В. ий В. Р.	ЕЛИ , ГРУППЫ 740301 740301 742701 742701	часы 50	пр п на файлы 10 20	офиль СТРОІ РЕД.	КОС Вых ЙКИ Удалит
	С С С С С С С С С С С С С С С С С С С		сы и ип все Лекци Лабор Практ	РАСПИС ии заторные ические	АНИЕ назв. Инфо техно проек Инфо Техно проек Инфо техно проек Инфо	КОНТРО АНИЕ • риационне потии. в тировании альных и риационне потии. в тировании альных и риационне потии. в тировании альных и ральных и риационне ральных и риационне ральных и риационне риационне риационне риационне риационне риационне риационне риационне риационне ритирании ральных и риационне ритирании		ПОЛЕ препода Стемпицка Стемпицка Стемпицка Нелаев В.	•ЗОВАТ ватели ий В. Р., ий В. Р. ий В. Р. В.	ЕЛИ / ГРУППЫ 740301 740302 742701 740301 542701	часы 50 12 16	пр п на файлы 1 ⁰ 2 ⁰	офиль СТРОІ РЕД. С	КОС ВЫХ УДАЛИТ Со
	СДЕРЖАНИЕ С ВНЮ НОВЫЙ ДОБАВИТЬ УДАЛИТЬ ПОИСК	RUDIT	сы ил все Лекци Лабор Практ З	РАСПИС ии жаторные ические	АНИЕ Инфо техно проек Интел Инфо техно проек Интел Инфо техно проек Интел	КОНТРО АНИЕ риационны потии в тировании ральных мі риационны риационны риационны потии в тировании ральных мі	ль бло меросхем меросхем меросхем ме	Г ПОЛЕ ПРЕПОДА Стемпицка Нелаев В Стемпицка Нелаев В.	аЗОВАТ ватели ий В. Р., ий В. Р. ий В. Р. в.	ЕЛИ / ГРУППЫ 740301 740302 742701 740301 740301 542701	цостун часы 50 12 16	пр П НА ФАЙЛЫ 10 00 00 00	офиль СТРОІ РЕД.	КОС ВЫХ УДАЛИТ Со
	СССРЖАНИЕ С СОДЕРЖАНИЕ С СНО НОВЫЙ ДОБАВИТЬ УДАЛИТЬ ПОИСК	RUDIT	РСЫ ип все Лекци Лабор Практ З	РАСПИС и раторные ические	назв. Инфо Техно, проек Интет Инфо Техно, проек Интет	КОНТРО АНИЕ	ль бло ме икросхем меросхем	полн препода Стемпици Нелаев В Стемпици Нелаев В.	азоват ий В. Р., в. В. ий В. Р. ий В. Р.	ЕЛИ / ГРУППЫ 740301 740301 742701 740301 542701 542701	часы 50 12 16	пр п на файлы 1 2 2 2 2	офиль СТРОІ РЕД. С	ROC

- 220013, г. Минск, ул. П. Бровки, 6, ауд. 119
- Стемпицкий Виктор Романович
- □ e-mail: *vstem*@bsuir.by
- □ Web: *http://bsuir.by*
- □ Телефон: +375 (17) 293-88-90