Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

УТВЕРЖДАЮ

Ректор учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» ________М.П. Батура 26.03.2015 Регистрационный № УД-45-131/баз.

РАСПРОСТРАНЕНИЕ РАДИОВОЛН И АНТЕННО-ФИДЕРНЫЕ УСТРОЙСТВА

Учебная программа учреждения высшего образования по учебной дисциплине для направления специальности 1-45 01 01-04 Инфокоммуникационные технологии (цифровое теле- и радиовещание)

СОСТАВИТЕЛИ: А.А.Тамело, доцент кафедры информационных радиотехнологий учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент.

РЕЦЕНЗЕНТЫ:

Вилькоцкий М.А., профессор кафедры информатики и основ электроники учреждения образования «Белорусский государственный педагогический университет им. М.Танка», доктор технических наук, профессор Кореневский С.А., доцент кафедры систем телекоммуникаций учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой информационных радиотехнологий (протокол № 8 от 02.03.2015);

Научно-методическим советом учреждения образования «Белорусский государственный университет информатики и радиоэлектроники (протокол № 6 от 20.03.2015)

Ответственный за редакцию:

Ответственный за выпуск: Г.Б.Коршунова

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебная программа по учебной дисциплине «Распространение радиоволн и антенно-фидерные устройства» разработана для студентов учреждений высшего образования, обучающихся ПО направлению специальности 1-45 01 01-04 Инфокоммуникационные технологии (цифровое теле- и радиовещание) в соответствии с требованиями образовательного стандарта ОСВО 1-45 01 01-04-2013 и учебного плана вышеуказанной специальности.

Резко возросшие требования подготовки студентов обусловлены непрерывным развитием прогресса в области научно-технической политики и практики. Реальные достижения технологий ставят на повестку дня необходимость развития новых подходов к проектированию антенных устройств развитию техники адаптивных фазированных антенных решёток, что обусловливает подготовку современного инженера на основе глубокого изучения теоретических положений курса «Распространение радиоволн и антенно-фидерные устройства», характеристик и практического применения антенных устройств и особенностей использования диапазонов волн.

Интенсивное развитие науки и техники требует повышения уровня профессиональной подготовки студента. В течение последних лет проводятся исследования применения электромагнитных (ЭМ) волн сверхвысокочастотного (СВЧ) - и крайневысокочастотного (КВЧ) – диапазона в системах, обеспечивающих повышенную степень электронной защиты информации в цифровых радиоэлектронных системах, в том числе специального назначения.

В результате этих исследований был обнаружен ряд неизвестных ранее явлений, которые позволяют создать системы с высокой чувствительностью и работающие при весьма неблагоприятных метеорологических условиях. Основным практическим итогом проведенных исследований является разработка основ новой области знаний радиоэлектронных цифровых систем обработки информации с повышенной скрытностью и защитой от проникновения.

ЦЕЛЬ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель формирование знаний об электромагнитном дисциплины: излучении радиодиапазона, его использовании в качестве носителя сигнала и на основе этого сформировать умения по проектированию антенн и устройств телекоммуникационных фидерных радиоканалах, В И используемых для обеспечения взаимосвязи составных частей в цифровых системах обработки информации.

Задачи изучения дисциплины:

- 1) приобретение практического опыта в исследовании характеристик основных типов антенн и особенностей антенно-фидерных устройств;
- 2) умение проводить анализ наиболее применительных элементов антенных устройств;
- 3) умение проводить анализ особенностей использования различных устройств СВЧ и их характеристик.

Базовыми учебными дисциплинами по курсу «Распространение радиоволн и антенно-фидерные устройства» (РРВ и АФУ) являются: «Математика», «Физика».

В свою очередь учебная дисциплина «Распространение радиоволн и антенно-фидерные устройства» является базой для такой учебной дисциплины, как «Цифровые системы радиосвязи и радиовещания».

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате изучения учебной дисциплины «Распространение радиоволн и антенно-фидерные устройства» формируются следующие компетенции:

академические:

- 1) уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
- 2) владеть системным и сравнительным анализом;
- 3) владеть исследовательскими навыками;
- 4) быть способным к анализу состояния научно-технической проблемы на основе подбора и изучения литературных и патентных источников, определять цели и формулировать задачи проектирования;

социально-личностные:

- 1) быть способным к социальному взаимодействию;
- 2) обладать способностью к межличностным коммуникациям;
- 1) быть способным к критике и самокритике;
- 3) уметь взаимодействовать со специалистами смежных профилей;
- 4) обладать навыками вести переговоры с другими заинтересованными участниками;

профессиональные:

- 1) совершенствовать, модернизировать и улучшать технико-экономические показатели систем инфокоммуникаций;
- 2) изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике проекта;
- 3) собирать и анализировать исходные данные для проектирования систем инфокоммуникаций;
- 4) проводить предварительное технико-экономическое обоснование проектных расчетов;

- 5) владеть методами математического и физического моделирования в процессе исследования и оптимизации параметров отдельных элементов и систем в целом;
- 6) применять методы анализа, синтеза и оптимизации в своей профессиональной области.

В результате изучения учебной дисциплины обучаемый должен знать:

- -характеристики и свойства электромагнитного излучения и основные законы описания электромагнитных полей;
- -классификацию диапазонов частот, принятую международной электротехнической комиссией (МСЭ) и используемую в радиовещании и телевидении;
- особенности распространения радиоволн в зависимости от диапазона частот;
- общую характеристику различных видов каналов передачи информации, в том числе спутниковых;
- состав и назначение антенн фидерных устройств для цифровых телекоммуникационных каналов связи;
 - основные принципы проектирования антенн и фидерных устройств; *уметь:*
- -определять целесообразность использования для телекоммуникационных (радиочастотных) каналов при функционировании ее составных частей;
- осуществлять выбор вида антенн в зависимости от применяемого частотного диапазона;
- -принимать решение о требуемой мощности передатчика сигналов, варианта конструкции приемо-передающей антенны и способе электропитания аппаратных частей;
- выполнять анализ влияния промышленных и естественных природных помех, а также возможных несанкционированных действий злоумышленников на эффективность функционирования (качество работы) системы.

владеть:

- -правильно выбирать тип линии передачи, узлы высокочастотного тракта и излучатели для работы в заданном диапазоне частот для обеспечения заданных характеристик преобразователей;
- производить расчет линий передачи, основных устройств высокочастотного тракта, излучателей для обеспечения требуемых характеристик и параметров;
 - измерять основные параметры устройств СВЧ и КВЧ излучателей;
- самостоятельно ориентироваться в научно-технической литературе по радиоэлектронике, технике КВЧ и СВЧ, антеннам;

- использовать основные законы электродинамики в инженерной деятельности;
- использовать методы теоретического и экспериментального исследования в области антенн и фидерных устройств.

Программа рассчитана на объем 146 учебных часов, из них – 64 аудиторных. Примерное распределение аудиторных часов по видам занятий: лекций – 48 часов, лабораторных занятий – 16 часов.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН УЧЕБНОЙ ДИСЦИПЛИНЫ

Наименование раздела, темы	Всего аудит. часов	Лек- ции, ч	Лабора- торные занятия, ч	Практи- ческие (семинарс кие) занятия, ч
1	2	3	4	5
Раздел 1. Структура поля радиоволн в пункте приёма	4	4	-	-
Тема 1. Распространение радиоволн (РВ) при расположении антенн непосредственно у границы раздела.	2	2	-	-
Тема 2. Распространение РВ при наличии на пути препятствий	2	2	-	-
Раздел 2. Строение и основные параметры тропосферы.	4	4	-	-
Тема 3. Тропосферная рефракция.	2	2	-	-
Тема 4. Дальнее распространение ультракоротких (УКВ) РВ за счет рассеяния в тропосфере.	2	2	-	-
Раздел 3. Состав и строение верхних слоев атмосферы.	6	6	-	-
Тема 5 . Распространение РВ в однородном ионизированном газе.	2	2	-	-
Тема 6 . Особенности распространения коротких волн.	2	2	-	-
Тема 7. Распространение РВ на линиях Земля – искусственные спутники земли (ИСЗ).	2	2	-	-
Раздел 4. Антенны и фидерные	6	4	2	-
устройства в современной технике Тема 8. Основные параметры	2	2	-	-

антенн				
Тема 9. Элементы общей теории	4	2	2	-
антенн				
Раздел 5. Вибраторные антенны.	6	4	2	
1	2	3	4	5
Тема 10. Требования, предъявляемые к	2	2	-	-
приёмным антеннам				
Тема 11. Типы вибраторных антенн,	4	2	2	-
основные свойства и применение				
Раздел 6. Щелевые антенны	4	2	2	-
Тема 12. Типы щелевых антенн, общие	4	2	2	-
свойства, назначение.				
Раздел 7. Апертурные антенны.	10	4	6	-
Тема 13. Типы рупорных антенн	3	1	2	-
Тема 14. Зеркальные антенны	4	2	2	-
Тема 15. Линзовые антенны	3	1	2	-
Раздел 8. Антенны бегущей волны.	6	4	2	-
Антенные решетки.				
Тема 16. Типы антенн бегущей волны	2	2	-	-
(АБВ), общие свойства, области				
применения.	4	2	2	
Тема 17. Назначение антенных	4	2	2	-
решеток, классификация, состав.				
Раздел 9. Элементы и узлы СВЧ	6	6	-	-
трактов	2	2		
Тема 18. Сравнение основных свойств обычных длинных линий и	2	2	-	-
волноводов.				
Тема 19. Напряжения и токи на входе	2	2	-	-
многополюсников.				
Тема 20. Метод измерения	2	2	-	-
универсальных параметров и их связь				
с параметрами матрицы рассеяния.	0		2	
Раздел 10. Симметричные	8	6	2	-
устройства.	2	2	_	_
Тема 21. Свойства геометрической матрицы.	<i>L</i>		_	_
Тема 22. Основные конструкции	6	4	2	
направленных ответвителей.	U	+		•
Раздел 11. Фильтры СВЧ.	4	4	_	_
Ферритовые устройства СВЧ	7	_	_	_
+ oppnions jeiponeina en i				

Тема 23. Амплитудно-частотные	2	2	-	-
характеристики (АХЧ) фильтров.				
Классификация СВЧ фильтров.				
1	2	3	4	5
Тема 24. Основные типы невзаимных	2	2	-	-
устройств.				
Итого	64	48	16	

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Раздел 1. СТРУКТУРА ПОЛЯ РАДИОВОЛН В ПУНКТЕ ПРИЁМА

Тема 1. РАСПРОСТРАНЕНИЕ РАДИОВОЛН (РВ) ПРИ РАСПОЛОЖЕНИИ АНТЕНН НЕПОСРЕДСТВЕННО У ГРАНИЦЫ РАЗДЕЛА

Учёт сферичности земли при распространении в пределах прямой видимости. Распространение РВ над однородной гладкой сферичностью Земли. Распространение РВ над неоднородной почвой. Приближённые граничные условия Леонтовича.

Тема 2. РАСПРОСТРАНЕНИЕ РВ ПРИ НАЛИЧИИ НА ПУТИ ПРЕПЯТСТВИЙ

Распространение РВ в холмистой местности в пределах прямой видимости. Распространение РВ в пределах прямой видимости над шероховатой поверхностью Земли. Формула Кирхгофа.

Раздел 2. СТРОЕНИЕ И ОСНОВНЫЕ ПАРАМЕТРЫ ТРОПОСФЕРЫ

Тема 3. ТРОПОСФЕРНАЯ РЕФРАКЦИЯ

Коэффициент преломления тропосферы. Учет тропосферной рефракции при распространении земных PB. Различные виды тропосферной рефракции. Условия возникновения явления сверхрефракции.

Тема 4. ДАЛЬНЕЕ РАСПРОСТРАНЕНИЕ УЛЬТРАКОРОТКИХ РВ ЗА СЧЕТ РАССЕЯНИЯ В ТРОПОСФЕРЕ

Определение удельной эффективности площади рассеяния. Дискретная и диффузная многолучевость. Поглощение PB в тропосфере. Поглощение в осадках. Молекулярное поглощение.

Раздел 3. СОСТАВ И СТРОЕНИЕ ВЕРХНИХ СЛОЕВ АТМОСФЕРЫ.

Тема 5. РАСПРОСТРАНЕНИЕ РВ В ОДНОРОДНОМ ИОНИЗИРОВАННОМ ГАЗЕ

Образование ионизированной области. Механизм ионизации. Распространение РВ в однородном ионизированном газе. Фазовая и групповая скорости распространения РВ в ионизированном газе. Распространение РВ в ионизированном газе при наличии постоянного магнитного поля.

Тема 6. ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ КОРОТКИХ ВОЛН

Преломление и отражение PB в ионосфере. Особенности распространения коротких волн. Замирания в диапазоне КВ. Зоны молчания. Эхо на коротких волнах. Влияние геомагнитных возмущений на условия распространения коротких волн.

Тема 7. РАСПРОСТРАНЕНИЕ РВ НА ЛИНИЯХ ЗЕМЛЯ – ИСКУСТВЕННЫЕ СПУТНИКИ ЗЕМЛИ

Основные потери в тракте Земля - ИСЗ. Помехи радиоприёму. Основные понятия ЭМС. Терагерцовые волны и перспективы их применения.

Раздел 4. АНТЕННЫ И ФИДЕРНЫЕ УСТРОЙСТВА В СОВРЕМЕННОЙ ТЕХНИКЕ

Тема 8. ОСНОВНЫЕ ПАРАМЕТРЫ АНТЕНН

Коэффициент направленного действия (КНД). Выражение КНД через ДН (диаграмму направленности). Численные оценки КНД. Коэффициент рассеяния, связь коэффициента рассеяния и КНД. Коэффициент полезного действия, коэффициент усиления (КУ). Сопротивление излучения (R из), входное сопротивление (R вх). Полоса пропускания антенны.

Тема 9. ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ АНТЕНН

Элементарные излучатели: диполь Герца, магнитный диполь, элементарный источник Гюйгенса, поле в дальней зоне, основные свойства.

Линейная антенна с непрерывным распределением возбуждения: типы линейных антенн, используемые в технике; поле в дальней зоне; диаграмма направленности, правило перемножения диаграмм направленности (ДН), множитель системы; влияние волновой длины и амплитудного распределения возбуждения на множитель системы; влияние фазового распределения возбуждения на множитель системы; режимы поперечного, наклонного и осевого излучения, ДН и КНД в различных режимах при линейном фазовом распределении.

Антенны с плоским излучающим раскрывом: типы антенн с плоским излучающим раскрывом; диаграмма направленности, множитель системы, коэффициент использования поверхности (КИП) и КНД плоского раскрыва; множитель системы, КИП и КНД раскрыва прямоугольной формы с разделяющимся амплитудно-фазовым распределением (АФР); диаграмма направленности, множитель системы, КИП и КНД круглого раскрыва с

произвольным и осесимметричным АФР; влияние АФР и формы раскрыва на множитель системы, метод эквивалентной линейной антенны.

Линейная эквидистантная решетка: типы антенных решеток, используемых в технике, их возможности; диаграмма направленности и плоские антенные решетки: множитель системы, условие единственности главного максимума; методы управления фазовым распределением.

Элементы статистической теории антенн и теории синтеза антенн. Отражательные характеристики антенн. Параметры антенн, определяющие электромагнитную совместимость.

Раздел 5. ВИБРАТОРНЫЕ АНТЕННЫ

Тема 10. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПРИЁМНЫМ АНТЕННАМ

Эквивалентная схема приёмной антенны. Принцип взаимности в теории антенн. Ток и электродвижущая сила на входе антенны в режиме приема. Мощность, отдаваемая приемной антенной в согласованную нагрузку. Диаграмма направленности, фазовая диаграмма, коэффициент эффективная площадь направленного действия, приема, площадь рассеяния, коэффициент использования поверхности Поляризационная эффективность. коэффициент усиления. Шумовая температура.

Тема 11. ТИПЫ ВИБРАТОРНЫХ АНТЕНН, ОСНОВНЫЕ СВОЙСТВА И ПРИМЕНЕНИЕ

Симметричный вибратор. Общие свойства, конструкции, области применения, распределение тока в плечах вибратора, поле в дальней зоне, ДН, фазавая диаграмма(ФД),поляризационная диаграмма (ПД), КНД, сопротивление излучения, входное сопротивление. Способы расширения полосы пропускания. Питание симметричных вибраторов, симметрирующие устройства. Действующая длина симметричного вибратора. Сопротивление излучения и входное сопротивление вибратора. Несимметричный вибратор, конструкции, основные параметры, области применения.

Линейный симметричный вибратор с плоским и линейным рефлектором, с линейным директором. Директорная антенна. Распределение тока в вибраторе. Диаграмма направленности вибратора. Действующая длина симметричного вибратора. Сопротивление излучения и входное сопротивление вибратора.

Раздел 6. ЩЕЛЕВЫЕ АНТЕННЫ

Тема 12. ТИПЫ ЩЕЛЕВЫХ АНТЕНН, ОБЩИЕ СВОЙСТВА, НАЗНАЧЕНИЕ

Характеристики и параметры одиночной линейной щели в бесконечном экране. Влияние размеров экрана на характеристики одиночной щели.

Резонансная длина одиночной щели в экране. Способы возбуждения одиночной щели.

Многощелевые антенны: резонансная многощелевая антенна на прямоугольном волноводе с волной H_{10} , способы расположения щелей, ДН, поляризация, КНД, согласование, диапазонные свойства; нерезонансная многощелевая антенна на прямоугольном волноводе с волной H_{10} , способы расположения щелей, ДН, поляризация, КНД, согласование, диапазонные свойства, сканирование; многощелевые антенны на коаксиальном волноводе с волной типа T.

Раздел 7. АПЕРТУРНЫЕ АНТЕННЫ

Тема 13. ТИПЫ РУПОРНЫХ АНТЕНН

Е-секториальный рупор: АФР на раскрыве, ДН, ФД, ПД, КНД, КИП, оптимизация по максимуму КНД, согласование.

Н-секториальный рупор: АФР на раскрыве, ДН, ФД, ПД, КНД, КИП, оптимизация по максимуму КНД, согласование.

Пирамидальный рупор: АФР на раскрыве, ДН, ФД, ПД, КНД, КИП, оптимизация по максимуму КНД, согласование.

Конический рупор: АФР на раскрыве, ДН, ФД, ПД, КНД, КИП, оптимизация по максимуму КНД, согласование. Волноводные и рупорные антенны с круговой поляризацией.

Тема 14. ЗЕРКАЛЬНЫЕ АНТЕННЫ

Состав, принцип работы, требования к облучателю, АФР на раскрыве зеркала, ДН, ПД, КНД, КИП, оптимизация по уровню боковых лепестков и по максимуму КНД. Коэффициент усиления и влияние на него различных видов потерь. Сканирование в зеркальных антеннах.

Параболо-цилиндрические зеркальные антенны: АФР на раскрыве, ДН, КНД. Зеркальные антенны с усеченными параболоидами, АФР на раскрыве, ДН, КНД. Двухзеркальные антенны: типы, общие свойства, применение. Рупорно-параболические антенны, общие свойства, применение. Зеркальные антенны с косекансными диаграммами направленности.

Тема 15. ЛИНЗОВЫЕ АНТЕННЫ

Линзовая антенна с осесимметричной линзой, состав, принцип работы, требования к облучателю. Профиль освещенной поверхности линзы. Ускоряющие и замедляющие линзы, их реализация. АФР на раскрыве, ДН, поляризация, КНД, КИП, КУ.

Зонирование линзовых антенн. Линзовые антенны с геодезическими линзами, конструкция, свойства, применение.

Сканирование в линзовых антеннах. Рупорно-линзовые антенны, состав, назначение.

Раздел 8. АНТЕННЫ БЕГУЩЕЙ ВОЛНЫ. АНТЕННЫЕ РЕШЕТКИ.

Тема 16. ТИПЫ АНТЕНН БЕГУЩЕЙ ВОЛНЫ (АБВ), ОБЩИЕ СВОЙСТВА, ОБЛАСТИ ПРИМЕНЕНИЯ

АБВ с линейным направителем, состав, типы, принцип работы, ДН, КНД, поляризация, согласование, выбор оптимального замедления, диапазонные свойства, конструкции: диэлектрическая стержневая антенна, ребристо-стержневая антенна, спиральные антенны. АБВ с плоским линейным и плоским дисковым направителем, конструкции, общие свойства, назначение.

Логопериодические антенны, принцип построения и работы, диапазонные свойства.

Частотно-независимые антенны: принцип построения, общие свойства, назначение.

Тема 17. НАЗНАЧЕНИЕ АНТЕННЫХ РЕШЕТОК, КЛАССИФИКАЦИЯ, СОСТАВ

Антенные решетки с фидерной и пространственной системой распределения мощности. Способы управления фазовым распределением в линейных и плоских решетках.

Типы излучающих систем в плоских антенных решетках. Антенные решетки с частотным сканированием. Многолучевые антенные решетки

Раздел 9. ЭЛЕМЕНТЫ И УЗЛЫ СВЧ ТРАКТОВ

Тема 18. СРАВНЕНИЕ ОСНОВНЫХ СВОЙСТВ ОБЫЧНЫХ ДЛИННЫХ ЛИНИЙ И ВОЛНОВОДОВ

Характеристическое и эквивалентное представление волновода. Эквивалентные схемы. Диафрагмы в волноводе. Расчёт эквивалентных схем диафрагм. Расчёт эквивалентной схемы диэлектрической пластины.

Тема 19. НАПРЯЖЕНИЯ И ТОКИ НА ВХОДЕ МНОГОПОЛЮСНИКОВ

Матрица рассеяния. Понятие о матрице рассеяния. Система уравнений для расчёта коэффициентов матрицы рассеяния. Методы измерения параметров матрицы рассеяния.

Тема 20. МЕТОД ИЗМЕРЕНИЯ УНИВЕРСАЛЬНЫХ ПАРАМЕТРОВ И ИХ СВЯЗЬ С ПАРАМЕТРАМИ МАТРИЦЫ РАССЕЯНИЯ

Классическая матрица передачи. Каскадное соединение четырёхполюсников. Параметры элементов классической матрицы передачи

для различных СВЧ узлов. Представление отрезков линий передачи с учётом потерь. Понятие о системах автоматизированного проектирования (САПР) монолитных интегральных схем для системы активных фазированных решеток(А Φ AP).

Раздел 10. СИММЕТРИЧНЫЕ УСТРОЙСТВА

Тема 21. СВОЙСТВА ГЕОМЕТРИЧЕСКОЙ МАТРИЦЫ

Собственные значения геометрической матрицы. Матрица преобразования. Симметричные четырёхполюсники. Параллельное Уобразное соединение. Эквивалентная схема. Симметричное соединение. Последовательные Т- и У-образные соединения. Эквивалентные схемы. Двойной волноводный тройник. Основные матричные соотношения.

Тема 22. ОСНОВНЫЕ КОНСТРУКЦИИ НАПРАВЛЕННЫХ ОТВЕТВИТЕЛЕЙ

Матрицы рассеяния идеального направленного ответвителя. Физические принципы работы направленных ответвителей. Понятие об автоматических измерителях параметров матриц рассеяния.

Раздел 11. ФИЛЬТРЫ СВЧ. ФЕРРИТОВЫЕ УСТРОЙСТВА СВЧ

Тема 23. АЧХ ФИЛЬТРОВ. КЛАССИФИКАЦИЯ СВЧ ФИЛЬТРОВ Способы аппроксимации АЧХ СВЧ фильтров. Частотные преобразования СВЧ фильтров. Эквивалентные схемы. Конструкции основных типов СВЧ фильтров и их параметры.

Тема 24. ОСНОВНЫЕ ТИПЫ НЕВЗАИМНЫХ УСТРОЙСТВ

Матрицы рассеяния невзаимных устройств. Невзаимные фазовращатели. Ферритовые СВЧ вентили. Матрица рассеяния идеального вентиля. Принцип работы и основные параметры ферритовых СВЧ вентилей. Ферритовые СВЧ циркуляторы. Принцип работы и основные параметры ферритовых СВЧ циркуляторов. Матрица рассеяния идеального циркулятора. Понятие об управляемых фильтрах.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

1. Неганов В.А. Устройства СВЧ и антенны. Ч. 1 : проектирование, конструктивная реализация, примеры применения устройств СВЧ / Неганов В.А., Клюев Д.С., Табаков Д.П. ; Неганов В.А. (ред.). — М. : URSS, 2013. — 602 с.

- 2. Неганов В.А. Устройства СВЧ и антенны. Ч. 2 : теория и техника антенн / Неганов В.А., Клюев Д.С., Табаков Д.П. ; Неганов В.А. (ред.). М. : URSS, 2014. 725 с.
- 3. Кураев А.А., Попкова Т.Л., Синицын А.К. Электродинамика и распространение радиоволн. М.: Инфра-М, 2014.
- 4. Власов А.А. Макроскопическая электродинамика. Изд.стереотип. М.: Либроком, 2014, 232 с. (Классический университетский учебник)
- 5. Сазонов Д.М. Антенны и устройства СВЧ. М.: Высшая школа, 2012.
- Сазонов Д.М., Гридин А.Н., Мишустин Б. А. Устройства СВЧ. М.: Высшая школа. 2012.
- 6. Антенны и устройства СВЧ /под ред. Д.И. Воскресенского. М.: Сов. радио, 2012.
- 7. Вольман В.Н., Пименов Ю.В., Муравцов А.Д. Техническая электродинамика.- М: Радио и связь, 2012.
- 8. Муравьев В.В.Проектирование и расчет антенн и устройств СВЧ/ Муравьев В.В., Тамело А.А., Молодкин Д.Ф.-Мн: БГУИР, 2010.-102 с.

ДОПОЛНИТЕЛЬНАЯ

- 8. Кочержевский Г.Н. Антенно-фидерные устройства. М.: Связь. 2012. Лавров А.С., Резников Г.Б. Антенно-фидерные устройства. - М.: Сов. радио. 1974.
 - 9. Марков Г.Т., Сазонов Д.М. Антенны. М.: Энергия. 1975.
 - 10. Альтман Дж. Устройства СВЧ. М.: Мир. 1968.
- 11. Айзенберг Г.З., Ямпольский В.Г., Терешин О.Н. Антенны УКВ. Ч.1,2. М.: Связь. 1977.
- 12. Основы проектирования микроэлектронной аппаратуры / под ред. Б.Ф.Высоцкого.-М.: Сов. радио, 1977.
 - 13. Фрадкин А.В. Антенно-фидерные устройства. М.: Связь. 1977.
- 14. Справочник по антенной технике.Т.1, Бахрах Л. Д. и др. М.: Радиотехника. 1997.
- 15. Гупта Г., Гардж Р., Чадха Р. Машинное проектирование СВЧ устройств. М.: Радио и связь. 1987.
- 16. Нефедов Е.И., Козловский В.В., Згурский А.В. Микрополосковые излучающие и резонансные устройства. Киев: Техника. 1990.
- 17. Панченко Б.А., Нефедов Е.И. Микрополосковые антенны. М.: Радио и связь. 1986.
- 18. Жук М.С., Молочков Ю.Б. Проектирование антенно-фидерных устройств. М.: Энергия. 1960.
- 19. Жук М.С., Молочков Ю.Б. Проектирование линзовых, сканирующих, широкодиапазонных антенн и фидерных трактов. М.: Энергия, 1972.
 - 20. Марков Г.Т. Антенны. М.: Энергия. 1960.
- 21. Лебедев И.В. Техника и приборы СВЧ. Т.1.- М.: Высшая школа. 1970.

22. Гололобов Д.В., Кирильчук В.Б. Распространение радиоволн и антенно-фидерные устройства. Методическое пособие в 3-х частях. Часть 2. Фидерные устройства. Мн.: БГУИР, 2005.

МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные методы (технологии) обучения, отвечающие целям и задачам учебной дисциплины:

- привлечение мультимедийных средств при чтении лекций по курсу;
- показ демонстраций в ходе чтения лекций;
- в ходе проведения практических занятий на ЭВМ выдача персональных заданий;
- тесная увязка усвоенных теоретических знаний с конкретными примерами при выполнении лабораторных работ.

ОРГАНИЗАЦИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- чтение оригинальной технической литературы по предмету;
- использование электронного ресурса по учебной дисциплине;
- подготовка отчетов по лабораторным работам;
- выполнение персональных контрольных заданий;
- подготовка к студенческим научным конференциям по теме изучаемой дисциплины.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Расчет основных характеристик вибраторных антенн .
- 2.Влияние амплитудного распределение на ДН линейной антенны.
- 3.Влияние фазового распределение на ДН и КНД линейной антенны.
- 4. Метод эквивалентной линейной антенны.
- 5. Оптимизация рупорной антенны.
- 6. Расчет однозеркальной параболической антенны.
- 7. Линейная антенная решетка.
- 8.Плоская антенная решетка.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ

(необходимого оборудования, наглядных пособий и т. п.) Наглядные пособия:

- 1.Плакаты со структурами волн в волноводах.
- 2.Отрезки различных линий передачи.
- 3. Образцы устройств СВЧ.
- 4. Образцы основных типов антенн.

Программы численного моделирования антенн:

- 1. Вибраторные антенны.
- 2.Влияние амплитудного распределение на ДН линейной антенны.
- 3.Влияние фазового распределение на ДН и КНД линейной антенны.
- 4. Метод эквивалентной линейной антенны.
- 5. Рупорные антенны.
- 6.Однозеркальная параболическая антенна.
- 7. Линейная антенная решетка.
- 8.Плоская антенная решетка.
- 9. Рупорно-линзовая антенна.
- 10. Моноимпульсная зеркальная антенна.
- 11. Синтез зеркальных антенн и антенных решеток.
- 12. Круговая диаграмма сопротивлений, режимы работы линии передачи, согласование нагрузки с линией передачи.
- 13. Влияние подстилающей поверхности на диаграмму направленности антенны. Программы для численного решения внутренней и внешней задач проволочных антенн.

ДИАГНОСТИКА КОМПЕТЕНЦИЙ СТУДЕНТА

Учебном планом специальности в качестве формы текущей аттестации по учебной дисциплине «Распространение радиоволн и антенно-фидерные устройства» предусмотрен экзамен. Оценка учебных достижений студента производится по десятибалльной шкале.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов используются следующие формы:

- доклады на конференциях;
- контрольные опросы;
- контрольные работы;
- письменные отчеты по лабораторным работам;
- отчеты по аудиторным практическим упражнениям с их устной защитой;
- отчеты по домашним практическим упражнениям с их устной защитой;
 - отчеты по лабораторным работам с их устной защитой;
 - электронные практикумы.