Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

УТВЕРЖДАЮ Пророктор на унабиой работа
Проректор по учебной работе
и социальным вопросам
А. А. Хмыль

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Учебная программа для магистрантов специальности: 1-53 80 01 «Автоматизация и управление технологическими процессами и производствами»

Кафедра систем управления	
Очное обучение	Заочное обучение
Семестр (семестры) весенний	Семестр (семестры) весенний
Лекции 30 (количество часов)	Лекции 8 (количество часов
Практические (семинарские) занятия <u>20</u> (количество часов)	Практические (семинарские) занятия <u>6</u> (количество часов)
Лабораторные занятия(количество часов)	Лабораторные занятия (количество часов)
Зачет(семестр)	Зачет (семестр)
Экзамен 1 (семестр)	Экзамен <u>2</u> (семестр)
Реферат (семестр)	Реферат (семестр)
Контрольная работа (семестр)	Контрольная работа (семестр)
Всего аудиторных часов по дисциплине _50	Всего аудиторных часов по дисциплине <u>14</u>
Самостоятельная работа 50	Самостоятельная работа 86
Всего часов по дисциплине 100	Всего часов по дисциплине 100

Учебная программа составлена в соответствии с типовым учебным планом специальности 1-53 80 01 «Автоматизация и управление технологическими процессами и производствами», утвержденным Министерством образования Республики Беларусь 20.10.2009, регистрационный № ТД — I.53-2-002/тип. и учебным планом специальности 1-53 80 01 «Автоматизация и управление технологическими процессами и производствами», утвержденным 23.04.2010, № 10М 53-01/24-0.

Рассмотрена и рекомендована к утверждению на заседании кафедры систем управления, протокол N 7 от 20.12.2010.

Заведующий кафедрой СУ

А. В. Марков

СОГЛАСОВАНО Начальник УПНКВК

Д. В. Лихачевский

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель преподавания дисциплины. Изложить основные направления в области автоматизации и управления современными технологическими процессами и производствами по условиям требуемой производительности и качества.

Задачи изучения дисциплины:

- обеспечение понимания важности задач оптимизации и адаптации в области автоматического управления техническими системами;
- концентрация внимания на тех факторах, которые ограничивают достижение поставленной цели при создании реальной системы управления;
- формулировка наиболее часто встречающихся в практике задач оптимизации и адаптации, а также методик их решения;
- развитие навыков расчета и проектирования оптимальных и адаптивных систем управления.

Перечень дисциплин, усвоение которых необходимо для изучения данной дисциплины

№	Название дисциплины	Раздел, тема		
ПП				
1.	Теория автоматического управ-	Линейные непрерывные системы, слу-		
	ления	чайные процессы в САУ		
2.	Современные методы синтеза	Принцип максимума Понтрягина, ди-		
	систем управления	намическое программирование, вариа-		
		ционное исчисление		
3.	Локальные системы автоматики	Промышленные системы управления		

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

1. Название тем лекционных занятий, их содержание, объем в часах

No	Название темы Содержание		Объем в			
ПП			часах			
1	2	3	4			
	Введение	Классическая и современная теории авто-	2			
		матического управления. Задачи опти-				
		мального и адаптивного управления.				
		Классификация систем оптимального и				
		адаптивного управления				
Разде	ел 1. ОПТИМАЛЬ	НЫЕ И КВАЗИОПТИМАЛЬНЫЕ СИ-	4			
CTE	МЫ УПРАВЛЕНІ	И ПО БЫСТРОДЕЙСТВИЮ				
1.1	Принципы по-	Понятие об оптимальных по быстродей-	2			
	строения систем	ствию процессах. Задачи с минальным и				
	управления по	заданным временем. Структурная схема				
	быстродействию системы, математические модели управля-					
		емых движущихся объектов.				

1	2	3	4
1.2.	Алгоритмы оп-	Алгоритм максимального быстродействия.	2
	тимального	Динамика системы. Алгоритм квазиопти-	
	управления по	мального быстродействия. Вопросы реа-	
	быстродействию	лизации.	
		[ИЯ ПАРАМЕТРОВ СИСТЕМЫ С ЗА- Й ПО УСЛОВИЯМ ТОЧНОСТИ	6
ДАП	нои структуро	и по условиям точности	
2.1	Задачи оптими-	Инженерная и математическая постановка	2
	зации парамет-	задач оптимизации параметров	
	ров		
2.2	Оптимизация	Оптимизация при регулярных и случай-	2
	параметров	ных воздействиях и возмущениях	
2.3	Учет естествен-	Определение показателей качества систе-	2
	ных ограниче-	мы в переходных режимах работы	
	ний на перемен-		
	ные состояния		
	системы		
Разде	ел 3 СИСТЕМЫ С	ОПТИМАЛЬНОЙ ПЕРЕДАТОЧНОЙ	4
		ВИЯ МИНИМУМА СТАТИСТИЧЕСКОГО	
	ТЕРИЯ КАЧЕСТВ		
3.1	Принципы по-	Критерии качества. Спектральные уравне-	2
	строения систем	ния связи между процессами на входе и	
	с оптимальной	выходе линейной системы. Синтез опти-	
	передаточной	мальной передаточной функции методом	
	функцией из	разложения спектра сигналов на множите-	
	условия мини-	ли	
	мума статисти-		
	ческого крите-		
	рия качества		
3.2	Синтез опти-	Постановка задачи синтеза по Калману.	2
	мальной переда-	Описание сигналов на входе системы.	
	точной функции	Уравнения оптимальной системы. Спосо-	
	по методике	бы решения уравнений	
	Калмана-Бьюси		
		НЫЕ СИСТЕМЫ С АДАПТАЦИЕЙ К	4
	ШНИМ ВОЗДЕЙТІ Г		
4.1	Принципы по-	Системы с разомкнутым и замкнутым	2
	строения систем		
		сти настройки параметров системы и	
	внешним воз-	оценка точности измерения параметров	
	действиям	внешних воздействий	

1 2	3	4
4.2 Примеры адап-	Системы, построенные на основе иденти-	2
тивных систем с	фикации средних квадратов внешних воз-	
адаптацией к	действий. Системы, построенные на срав-	
внешним воз-	нении высокочастотных и низкочастотных	
действиям	составляющих спектра сигналов	
	ЫЕ СИСТЕМЫ С АДАПТАЦИЕЙ К ПА-	4
РАМЕТРАМ ОБЪЕКТА	УПРАВЛЕНИЯ	
5.1 Принципы по-	Системы с моделью и вычислителем па-	2
строения систем	раметров; с эталонной моделью; с анали-	
с адаптацией к	заторами характеристик и т. д. Эталонные	
параметрам объ-	модели динамических характеристик	
екта управления		
5.2 Структурные	Схема алгоритмов вспомогательного опе-	2
системы алго-	ратора. Алгоритм вариации параметров	
ритмов настрой-		
ки параметров		
Раздел 6 ЭКСТРЕМАЛ	ЬНЫЕ СИСТЕМЫ	4
6.1 Принципы по-	Понятие об экстремальном управлении.	2
строения экс-	Математические модели объектов. Клас-	
тремальных си-	сификация экстремальных систем	
стем		
6.2 Типы одномер-	Системы с управлением по градиенту, с	2
ных систем экс-	измерением производной экстремума, ша-	
тремального	гового типа, со вспомогательной модуля-	
управления	цией	
Заключение	Проблемы оптимизации в сложных техни-	2
	ческих системах с автоматическим управ-	
	лением, в экономике, экологии и социаль-	
	ной сфере	
Итого часов:		30

2. Перечень тем практических (семинарских) занятий, их содержание и объем в часах

№ пп	Название темы	Содержание	Объем в
			часах
1	2	3	4
1.	Принципы построения систем управления по быстродействию	Расчет математической модели подвижного объекта управления	2
2.	Принципы построения систем управления по быстродействию	Расчет тахограммы движения	2

1	2	3	4
3.	Алгоритмы оптималь-	Синтез алгоритма управления	4
	ного управления по	движением с адаптацией к из-	
	быстродействию	менению внешних сил и мо-	
		ментов	
4.	Оптимизация парамет-	Оптимизация параметров си-	4
	ров.	стемы управления по миниму-	
	Учет естественных	му среднеквадратической по-	
	ограничений на пере-	грешности	
	менные состояния си-		
	стемы		
5.	Синтез оптимальной	Статистический синтез опти-	4
	передаточной функции	мальных систем управления	
	по методике Калмана-		
	Бьюси		
6.	Принципы построения	Оценка точности настройки	2
	систем с адаптацией к	параметров адаптивной систе-	
	внешним воздействиям	МЫ	
7.	Принципы построения	Расчет времени усреднения и	2
	систем с адаптацией к	параметров усредняющих	
	внешним воздействиям	устройств канала адаптации	
Итого ч	насов:		20

3. Контрольная работа

Перечень тем контрольных работ:

- 1. Оптимизация параметров системы управления технологическим процессом.
 - 2. Оптимизация параметров следящей системы.
 - 3. Адаптивная следящая система с переменной структурой.

4 ЛИТЕРАТУРА

4.1. ОСНОВНАЯ

- 4.1.1. Адаптивное управление в технических системах / Н. В. Антонов, В. А. Терехов, И. Ю. Тюткин. Учебное пособие. СПб. : Издательство С.–Петербургского университета, 2001. 244 с.
- 4.1.2. Александров, А. Г. Оптимальные и адаптивные системы. Электронная книга. / А. Г. Александров. М., 2003. 278.
- 4.1.3. Александров, А.Г. Оптимальные и адаптивные системы / А. Г. Александров. М. : Высшая школа, 1989.
- 4.1.4. Клюев, А. С. Оптимизация автоматических систем управления по быстродействию / А. С. Клюев, А. А. Колесников. М.: Энергоиздат, 1982.
- 4.1.5. Методы робастного, нейро-нечеткого и адаптивного управления / под ред. И. Д. Егупова. М. : МГУ им Н. Э. Баумана, 2002.

- 4.1.6. Методы классической и современной теории автоматического управления: Учебник в 5-и т.т.; 2-е изд., перераб. и доп., т. 4 / под ред. К. А. Пупкова, Н. Д. Егупова. М. : Издательство МГТУ им. Н. Э. Баумана, 2004.
- 4.1.7. Чураков, Е. П. Оптимальные и адаптивные системы: Учеб. пособие для вузов / Е. П. Чураков. М. : Энергоатомиздат, 1987. 256 с.

4.2. ДОПОЛНИТЕЛЬНАЯ

- 4.2.1. Брайсон, А. Хо Ю.-Ши. Прикладная теория оптимального управления / А. Брайсон, Хо Ю.-Ши. М.: Мир, 1972.
- 4.2.2. Смольников, О. П. Синтез квазиоптимальных систем регулирования / О. П. Смольников. Л. : Энергия, 1969.
- 4.2.3. Солодовников, В. В. Расчет и проектирование самонастраивающихся систем с эталонными моделями / В. В. Солодовников, Л. С. Шрамко. М. : Машиностроение, 1972.
- 4.2.4. Куропаткин, П. В. Оптимальные и адаптивные системы / П. В. Куропаткин. М. : Высшая школа, 1980. 288 с.
- 4.2.5. Олейников, В. А. Основы оптимального и экстремального управления / В. А. Олейников, Н. С. Зотов, А. М. Пришвин. М. : Высшая школа, 1969. 296 с.

5. ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ, НАГЛЯДНЫХ И ДРУ-ГИХ ПОСОБИЙ, МЕТОДИЧЕСКИХ УКАЗАНИЙ И МАТЕРИАЛОВ И ТЕХНИЧЕСКИХ СРЕДСТВ ОБУЧЕНИЯ

Пакеты прикладных программ для моделирования и оптимизации динамических систем MODS-2, MATLAB 5.0, MATLAB 4.5.

4. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

Номер недели	Номер темы (по п. 1)	Название вопросов, которые изучаются на лекциях	Практические (семинарские) занятия (по п. 2)	Литература (номера) <i>(по п.5)</i>	Самостоятельная работа студентов (часы)	Форма контроля знаний студентов
1	Введение	Задачи оптимизации и адаптации		4.1.6	2	
2	1.1	Управление по быстродействию	1	4.1.2; 4.1.4	2	TO
3	1.1	Алгоритмы	2	4.1.2; 4.1.4	4	TO
4	2.1	Задачи оптимизации параметров	3	4.1.2	2	
5	2.2	Методы оптимизации	3	4.1.2	4	TO
6	2.3	Учет ограничений	4	4.1.2	4	TO
7	3.1	Синтез оптимальных систем	4	4.1.1; 4.1.2	2	TO
8	3.2	Метод Калмана-Бьюси	5	4.1.1; 4.1.2	4	TO
9	4.1	Адаптация к внешним воздействиям	5	4.1.1; 4.1.2	4	TO
10	4.2	Типы систем с адаптацией	6	4.1.1	4	TO
11	5.1	Адаптация к параметрам объекта управле-	7	4.1.1; 4.1.5	4	
		ния				
12	5.2	Синтез алгоритмов		4.1.1; 4.1.5	4	TO
13	6.1	Экстремальное управление		4.1.1; 4.1.3	4	TO
14	6.2	Типы систем		4.1.1; 4.1.3	4	TO
15	Заключение	Проблемы оптимизации и адаптации			2	