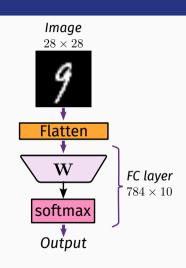
Practical Aspects of FPGA Implementation of Neural Network for Image Classification Based on Learned Separable Transform

Egor Krivalcevich Maxim Vashkevich

krivalcevi4.egor@gmail.com, vashkevich@bsuir.by


Belarusian State University of Informatics and Radioelectronics Minsk, Belarus

17th International Conference on Pattern Recognition and Information Processing

Intro

- Goal: the development of a resource-efficient hardware architecture for FPGA-based image recognition.
- A simple single-layer neural network (7850 parameters) allows achieving a relatively low accuracy of 92.5
- When adding hidden layers, the number of network parameters increases rapidly

Two-dimensional learnable separable transform (LST)

Two-dimensional separable transform

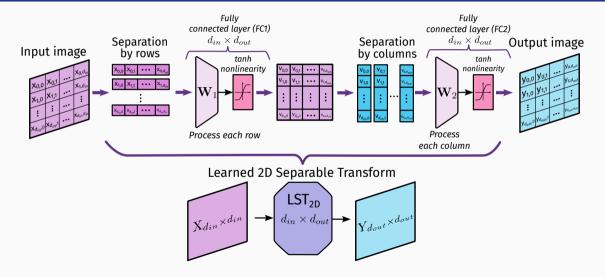
 Two-dimensional separable transforms are used in image processing to reduce the computational complexity of spatial filtering. The transform kernel has the form:

$$\mathbf{W} = \mathbf{v} \times \mathbf{h}^T$$
,

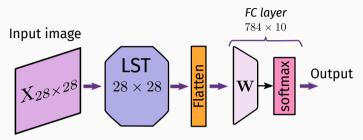
where $\mathbf{W} \in \mathbb{R}^{n \times n}$, $\mathbf{v}, \mathbf{h} \in \mathbb{R}^{n \times 1}$.

- The separable transform W has 2n independent parameters, instead of n^2 parameters that the usual transform has.
- An example of a separable transform is the Sobel filter:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}.$$


Two-dimensional learnable separable transform (LST)

- The proposed learned separable transform (LST) processes an image first row-wise and then column-wise.
- The LST processes an image **X** of size $d_{in} \times d_{in}$ and outputs an image **Y** of size $d_{out} \times d_{out}$:

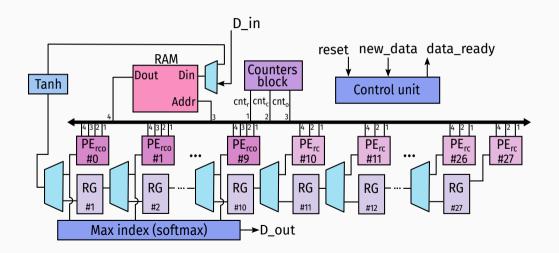

$$\mathbf{Y} = LST_{d_{in} \times d_{out}}(\mathbf{X}) = tanh(\mathbf{W}_2 tanh(\mathbf{W}_1 \mathbf{X}^T)),$$

where \mathbf{W}_1 , \mathbf{W}_2 are the weight matrices of fullyconnected layers (FC1 and FC2), d_{out} is the hyperparameter of the transform that determine the total number of learnable parameters $N_{params} = 2 \times (d_{in} + 1) \times d_{out}$.

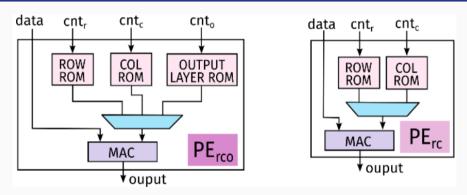
Two-dimensional learnable separable transform (LST)

Model LST-1

- \bullet ${\rm LST}$ can be viewed as a basic building block for constructing compact neural networks for image recognition.
- Number of parameters of LST-1 model:


$$N_{params} = 2(d_{in} + 1) \times d_{out} + (d_{out}^2 + 1) \times 10$$

• For $d_{in}=d_{out}$ = 28 number of model parameters N_{params} = 9 474.

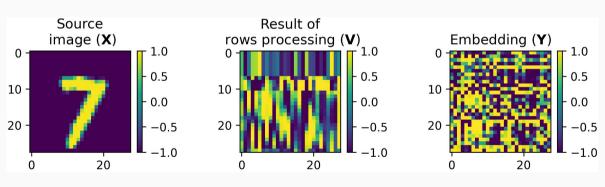

Implementing the LST-1 neural network on

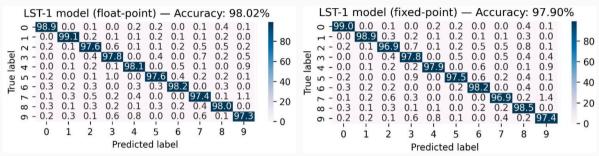
FPGA

Implementation of LST-1 on FPGA

Implementing the LST-1 neural network on FPGA

- ullet The LST-1 implementation includes 10 PE_{rco} blocks and 18 PE_{rc} blocks
- At the first stage of the LST calculation, all PE processing elements are used. In each PE, one column of the \mathbf{W}_1 matrix is stored in the "ROW ROM" memory, and the columns of the \mathbf{W}_2 matrix are stored in the "COL ROM" memory.


Implementing the LST-1 neural network on FPGA


- The LST-1 processor is described in the SystemVerilog language and implemented on the Xilinx Zybo Z7 board (FPGA XC7ZO10)
- The Linux PYNQ distribution was used to organize the testing process, which was launched on the ARM core of the XC7Z010 crystal.
- The LST-1 processor was implemented as an IP core using a 12-bit representation of numbers.

Block type	Used	Available	Usage, %
LUT as logic	1302	17600	7.4
Flip Flop	1461	35200	4.15
BRAM	33.5	120	55.83
DSP	57	80	71.25

- MNIST dataset (70k images of handwritten digits of size 28 × 28)
- Initialization of model weights was performed using the Xavier method
- Objective function negative logarithmic likelihood (torch.nn.NLLLoss)
- Training was performed using the Adam algorithm (learning rate $\eta=2\times 10^{-3}$, number of epochs 300, batch size 1000)
- The metric accuracy was used to evaluate the quality of recognition

• The LST-1 model encodes an image as an irregular QR-code-like pattern.

• The confusion matrices obtained from the floating-point model and FPGA implementation, which aligns with the matrix generated by the Python-based fixed-point model. The overall accuracy of the LST-1 model with weights quantized into Q6.7 format is 97.9

Authors & ref.	DNN architecture	Model size	Accuracy, %
Medus [1]	784-600-600-10	891 610	98.63%
Samragh [2]	784-512-512-10	670 208	98.40%
Huynh [3]	784-126-126-10	115 920	98.16%
Huynh [3]	784-40-40-40-10	34 960	97.20%
Westby [4]	784-12-10	9 550	93.25%
proposed	LST-1	9 474	98.02%

¹ M. Samragh, "Customizing neural networks for efficient FPGA implementation", 2017

² L.D. Medus, "A novel systolic parallel hardware architecture for the FPGA acceleration of feedforward neural networks", 2019.

³ T.V. Huynh, "Deep neural network accelerator based on FPGA", 2017

⁴ I. Westby, et al. "FPGA acceleration on a multilayer perceptron neural network for digit recognition", 2021

Conclusions

- A two-dimensional trainable separable transform is proposed, which can be used as a basic block for constructing compact neural networks for image recognition
- The LST-1 model attains a recognition accuracy exceeding 98% for handwritten digits using only 9.4 thousand parameters, demonstrating a highly efficient architecture
- A hardware architecture for implementing the LST-1 model based on FPGA is proposed