ОПТИМИЗАЦИОННЫЙ МЕТОД ПРОЕКТИРОВАНИЯ ФИЛЬТРА-ПРОТОТИПА ДЛЯ АППРОКСИМАЦИИ ЧАСТОТНЫХ ХАРАКЕТРИСТИК ГАММАТОН-ФИЛЬТРОВ ПРИ ПОМОЩИ НЕРАВНОПОЛОСНОГО КОСИНУСНО-МОДУЛИРОВАННОГО БАНКА ФИЛЬТРОВ

ст. преп. Порхун М.И., проф. Вашкевич М.И.

Белорусский государственный университет информатики и радиоэлектроники (БГУИР)

Кафедра электронных вычислительных средств

DSPA Conference

Цель доклада

Представить оптимизационный метод проектирования фильтра-прототипа для аппроксимации частотных характеристик гамматон-фильтров, моделирующих работу слуховой системы, при помощи неравнополосного косинусно-модулированного банка фильтров.

Области применения фильтров, моделирующих работу слуховой системы человека:

- аудиокодеры;
- модели nomepu слуха (hearing loss simulation);
- вспомогательные слуховые устройства (hearing assistive device).

План доклада

- Проблематика кохлеарных фильтров
- Банк гамматон-фильтров (БГФ)
- Причины, затрудняющие эффективную реализацию БГФ
- Аппроксимация частотной характеристики БГФ
- Неравнополосный косинусно-модулированный банк фильтров
- Оптимизация фильтра-прототипа
- Экспериментальные исследования
- Заключение

Проблематика кохлеарных фильтров

- Основными типами фильтров, моделирующих работу слуховой системы, являются *гамматон-фильтры* и *гаммачирп-фильтры*.
- Данные фильтры выполняют частотно-временную декомпозицию входного сигнала и **моделируют работу базилярной мембраны** улитки уха.

Банк гамматон-фильтров

• БГФ представляет собой набор гамматон-фильтров, каждый из которых связан с определенной характеристической частотой f_c :

$$g(t) = t^{l-1} e^{-2\pi b \text{ERB}(f_c)t} \cos(2\pi f_c t)$$
 , $t > 0$

где t – время, l – порядок фильтра, b – параметр, регулирующий ширину полосы фильтра, f_c – центральная частота фильтра, ERB (f_c) – эквивалентная прямоугольная полоса пропускания слухового фильтра.

0,

Причины, затрудняющие эффективную реализацию БГФ

1) большая длина импульсных характеристик, ЧТО реализации существенных вычислительных затрат.

требует ДЛЯ

6

Причины, затрудняющие эффективную реализацию БГФ

1) большая длина *импульсных характеристик*, что реализации существенных вычислительных затрат.

в практических задачах *число каналов банка фильтров может* 2) доходить до 100. С учётом длинных импульсных характеристик, число операций умножения при поступлении нового отсчёта входного сигнала может достигать более 10 тыс.

требует ДЛЯ

Причины, затрудняющие эффективную реализацию БГФ

1) *импульсных характеристик*, что большая длина реализации существенных вычислительных затрат.

в практических задачах **число каналов банка фильтров может** 2) доходить до 100. С учётом длинных импульсных характеристик, число операций умножения при поступлении нового отсчёта входного сигнала может достигать более 10 тыс.

3) отсутствие модели банка фильтров синтеза.

требует ДЛЯ

Вариант решения проблемы

Задача

Актуальна задача разработки банка фильтров, схожего характеристикам с БГФ, но имеющего эффективную реализацию, а также включающего в себя структуры как для анализа, так и для синтеза сигнала.

Решение

Предложен вариант решения проблемы высокой вычислительной сложности прямой реализации БГФ за счет использования неравнополосного косинусномодулированного банка фильтров (НКМБФ) для аппроксимации банка гамматон-фильтров (БГФ), что *требует существенно меньше* **вычислительных ресурсов**, чем прямая реализация БГФ.

ПО СВОИМ

Аппроксимация частотной характеристики БГФ

Ставится задача разработки метода расчета фильтра-прототипа для НКМБФ для получения банка фильтров, схожего по своим характеристикам с БГΦ.

Косинусно-модулированный банк фильтров (КМБФ)

КМБФ образуется путём применения косинусной модуляции к фильтру**прототилу** – КИХ-фильтру нижних частот h(n) с частотой среза $\pi/2M$, где М – количество каналов.

Таким образом, синтез целого банка фильтров сводится к расчёту только фильтра-прототипа.

ω

Косинусно-модулированный банк фильтров (КМБФ)

Импульсные характеристики М-канального КМБФ анализа $h_k(n)$ описываются выражением:

$$h_k(n) = 2h(n)\cos\left(\frac{\pi(k+0.5)}{M}\left(n - \frac{N-1}{2}\right) + \frac{(-1)}{2}\right)$$

где N = 2mM – порядок фильтра-прототипа, m –положительное k = 0, ..., M - 1 – номер канала, n = 0, ..., N - 1 – временной индекс, h(n) – коэффициенты фильтра-прототипа.

Косинусно-модулированный банк фильтров (КМБФ)

Пусть $H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} - z$ -образ фильтра-прототипа. Тогда, применив *z*-преобразование к $h_k(n)$, получим **передаточные функции фильтров** анализа $H_k(z)$:

$$H_k(z) = a_k b_k H\left(z^{-1} W_{2M}^{(k+0,5)}\right) + \bar{a}_k \bar{b}_k H\left(z^{-1} W_{2M}^{-1}\right)$$
где $a_k = e^{j(-1)^k \pi/4}$, $W_M = e^{j2\pi/M}$, $b_k = W_{2M}^{\frac{N-1}{2}(k+0,5)}$, а комплексное сопряжение.

$\binom{-(k+0,5)}{2M}$

верхняя черта

Неравнополосный КМБФ

НКМБФ образуется из равнополосного КМБФ путём применения фазового преобразования.

Воспользовавшись заменой $z^{-1} \rightarrow A(z)$, перепишем $H_k(z)$:

$$H_{k}(z) = a_{k}b_{k}H\left(A(z)W_{2M}^{(k+0,5)}\right) + \bar{a}_{k}\bar{b}_{k}H\left(A(z)W_{2M}^{-(k+0,5)}\right)$$

НКМБФ

Амплитудно-частотная характеристика фазового звена определяется как:

$$A(e^{j\omega}) = e^{j\Theta_{\alpha}(\omega)}; \quad \Theta_{\alpha}(\omega) = \omega - 2 \operatorname{arctg}\left(\frac{\alpha}{\alpha}\right)$$

где α – коэффициент фазового звена, а ω – нормированная частота в радианах. результате замены элементов задержки в полифазной структуре В равнополосного КМБФ на фазовые звенья происходит деформация (отображение) частотной сетки $\omega \to \Theta_{\alpha}(\omega)$.

Степень деформации частот зависит только от параметра α .

$\left(\frac{\sin(\omega)}{\cos(\omega)-1}\right)$

Перейдем к вычислению частотных характеристик НКМБФ с использованием векторно-матричных операций.

Частотную характеристику КИХ-фильтра чётного порядка N с линейной ФЧХ можно записать в виде:

$$H(e^{j\omega}) = e^{-j(N-1)\omega/2} \mathbf{C}^{\mathrm{T}}(\omega) \mathbf{h},$$

где

$$\begin{split} \mathbf{C}(\omega) &= \left[2\cos\left(\frac{\omega}{2}\right) 2\cos\left(\frac{3\omega}{2}\right) \dots 2\cos\left(\frac{(N-1)\omega}{2}\right) \right]^{\mathrm{T}} \\ \mathbf{h} &= \left[h\left(\left\lfloor\frac{N}{2}\right\rfloor\right) h\left(\left\lfloor\frac{N}{2}\right\rfloor + 1\right) \dots h(N-1)\right]^{\mathrm{T}}, \end{split}$$
где надстрочный знак ^T означает транспонирование.

 $\left[\frac{\omega}{\omega}\right]^{1}$,

(2)

(1)

Используя (1) запишем выражение для расчёта частотной характеристики КМБФ:

$$H_k(e^{j\omega}) = a_k b_k e^{-\frac{j(N-1)\omega}{2}} \mathbf{C}^{\mathrm{T}}(\omega) \mathbf{h} W_{2M}^{(k+0,5)} + \bar{a}_k \bar{b}_k e^{-j(N-1)\omega/2} \mathbf{C}^{\mathrm{T}}(\omega) \mathbf{h} W_{2M}^{-(k+0,5)}$$

⊦0,5)

НКМБФ получается из КМБФ путём отображения частотной оси, поэтому его частотную характеристику можно записать в виде:

$$H_k(e^{j\omega}) = a_k b_k e^{-j(N-1)\Theta_{\alpha}(\omega)/2} \mathbf{C}^{\mathrm{T}}(\Theta_{\alpha}(\omega)) \mathbf{h} W_{2M}^{(k+0,5)} + \overline{a}_k \overline{b}_k e^{-j(N-1)\Theta_{\alpha}(\omega)/2} \mathbf{C}^{\mathrm{T}}(\Theta_{\alpha}(\omega)) \mathbf{h} W_{2M}^{-(k+0,5)}.$$

Данное выражение можно использовать для создания оптимизации фильтра-прототипа НКМБФ для аппроксимации АЧХ БГФ. B этом случае настроечными параметрами коэффициенты фильтра-прототипа h.

процедуры

выступают

Требования к фильтру-прототипу

•Частотные характеристики гамматон-фильтров монотонно спадают относительно центральной частоты, а АЧХ НКМБФ имеют колебания в Следовательно, необходимо непропускания. полосе монотонности частотных характеристик НКМБФ.

• Импульсная характеристика фильтра-прототипа НКМБФ должна быть монотонна и не иметь пересечений уровня нуля.

добиться

Логистический сигмоид

«конструирования» фильтра-прототипа НКМБФ Для использовать функцию логистического сигмоида:

Её выбор обусловлен её монотонностью, а также переходов через нуль.

Фактически требуется получить лишь половину реальной импульсной характеристики, вторая половина образуется симметричным отображением.

отсутствием

Модель импульсной характеристики

Половину импульсной характеристики фильтра-прототипа НКМБФ предлагается формировать с использованием следующей функции:

$$p(t) = A \prod_{r=1}^{K} \sigma(k_r t + b_r), \quad t \ge 0, A > 0.$$

Поскольку p(t) является непрерывной, то необходимо выполнить её дискретизацию:

$$p(n) = p(n\Delta T), \qquad \Delta T = 1/24, \qquad n = 0, 1, ...$$

где p(n) – половина импульсной характеристики фильтра прототипа: $\mathbf{h} = [p(0) \ p(1) \dots p(N/2 - 1)]^{\mathrm{T}}.$

$\frac{N}{2} - 1.$

Модель импульсной характеристики

Оптимизация фильтра-прототипа

• Оптимизация фильтра-прототипа НКМБФ базируется на минимизации среднеквадратичной ошибки между АЧХ БГФ ($|H_k^g(e^{j\omega})|)$ и НКМБФ $(|H_k^c(e^{j\theta(\omega)})|)$ в каждом канале:

$$MSE = \frac{1}{M-2} \sum_{k=1}^{M-2} \left(\left| H_k^g(e^{j\omega}) \right| - \left| H_k^c(e^{j\theta(\omega)}) \right| \right)$$

- При расчёте ошибки предлагается не учитывать первый (k = 0) и последний каналы (k = M - 1), поскольку у НКМБФ они соответствуют фильтру нижних и верхних частот, а у БГФ – полосовым фильтрам.
- Минимизация MSE выполняется относительно параметров A, kr, br мультипликативной сигмоидной функции фильтра-прототипа.

 $)|)^{2}.$

Экспериментальные исследования

- Для экспериментального исследования эффективности предложенного метода оптимизации разработана его программная реализация на Python c использованием библиотеки PyTorch.
- В качестве примера синтезировался 20-канальный НКМБФ.
- Центральные частоты БФ выбраны в соответствии с психоакустической шкалой Барков.
- Итоговый частотный диапазон составил 100...4400 Гц.
- Порядок фильтра-прототипа $N = 2mM = 2 \cdot 5 \cdot 20 = 200$, частота дискретизации $f_s = 16$ кГц, количество сигмоид для синтеза фильтра-прототипа - 12.

Экспериментальные исследования

1 Порхун, М.И. Моделирование частотной харакетристики банка гамматон-фильтров при помощи неравнополосного косинусно-модулированного банка фильтров / М. И. Порхун, М. И. Вашкевич // Цифровая обработка сигналов и её применение: труды 24-й междунар. конф., Россия, Москва, 2022 г. – Т. 1. – С. 53–57.

Результаты экспериментальных исследований

- Для сравнения полученного результата с предыдущим, вычислена среднеквадратичная ошибка для обеих моделей.
- В предыдущей работе MSE = 0.320, а для предложенной модели MSE = 0.324. По величине *MSE* **модели** сопоставимы.

Результаты экспериментальных исследований

• Для сравнения полученного результата с предыдущим, вычислена среднеквадратичная ошибка для обеих моделей.

• В предыдущей работе MSE = 0.320, а для предложенной модели MSE = 0.324. По величине MSE **модели сопоставимы**.

• По виду АЧХ можно сделать вывод, что предложенный метод позволяет получить аппроксимацию БГФ с монотонными спадами частотных характеристик.

Результаты экспериментальных исследований

• Для сравнения полученного результата с предыдущим, среднеквадратичная ошибка для обеих моделей.

• В предыдущей работе MSE = 0.320, а для предложенной модели MSE = 0.324. По величине MSE модели сопоставимы.

• По виду АЧХ можно сделать вывод, что предложенный метод позволяет получить аппроксимацию БГФ с монотонными спадами частотных характеристик.

• Фильтры, полученные в предыдущей работе, имеют колебания в полосе *ослабления на уровне* —43 *дБ*, что является негативным фактором с точки зрения последующего использования банка фильтров для частотного анализа в модели потери слуха.

вычислена

Заключение

• В работе рассмотрен оптимизационный метод проектирования фильтрапрототипа для аппроксимации частотных характеристик гамматон-фильтров при помощи НКМБФ.

- Предложено «конструировать» фильтр-прототип на мультипликативной сигмоидной функции.
- Оптимизация фильтра-прототипа выполнена путём среднеквадратичной ошибки между АЧХ БГФ и НКМБФ в каждом канале.
- •Эксперимент показал, что полученные АЧХ достаточно аппроксимируют АЧХ БГФ.
- Разработанный метод, в отличие от существующих подходов, позволяет получать монотонные спады частотных характеристик банка фильтров.

основе

минимизации точно