СЛИЯНИЕ МЕДИЦИНСКИХ ИЗОБРАЖЕНИИ НА ОСНОВЕ ДИСКРЕТНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ

доц. Петровский Н. А., ст. Куис И.С., доц. Вашкевич М.И.

Белорусский государственный университет информатики и радиоэлектроники (БГУИР)

Кафедра электронных вычислительных средств

DSPA Conference

Цель работы

Исследовать методы слияния медицинских изображений в области коэффициентов дискретного вейвлет-преобразования (ДВП), а также способы их улучшения с использованием представления НЧ-компонент ДВП в области модуля максимума вейвлет-преобразования. Дополнительно ставилась цель сравнить данные методы с альтернативным подходом на основе целочисленного полифазного банка фильтров.

Двумерное ДВП

Схема двумерного дискретного вейвлет-преобразования (ДВП)

3/18

Восстановленное Изображение

Двумерное ДВП в задаче слияния изображений

Схема слияния двух изображений с помощью двумерного ДВП

Двумерное ДВП в задаче слияния изображений

Схема расположения коэффициентов ДВП

A	Η
V	D

Двумерное ДВП в задаче слияния изображений

Базовый алгоритм

Результирующее изображение

Слияние: КТ + МРТ

Разреженное представление в пространстве максимумов модуля вейвлет-преобразования (ММВП)

Переход в пространство максимумов модуля вейвлетов выполняется путем сглаживания изображения с масштабированным ядром $\theta(x, y)$. Для вычислений используются вейвлеты $\psi^{(x)}$ и $\psi^{(y)}$, которые являются частными производными сглаживающей функции θ :

$$\psi^{(x)} = \frac{\partial \theta}{\partial x}, \qquad \psi^{(y)} = \frac{\partial \theta}{\partial y}$$

Тогда можно ввести понятие двумерного вейвлет-преобразования W в точке *х, у* как:

$$Wf(x,y) = \begin{pmatrix} W^{(x)}f(x,y) \\ W^{(y)}f(x,y) \end{pmatrix} = \begin{pmatrix} \psi^{(x)} * f(x,y) \\ \psi^{(y)} * f(x,y) \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x}(f * \theta)(x,y) \\ \frac{\partial}{\partial y}(f * \theta)(x,y) \end{pmatrix}$$

 $= \nabla (f * \theta)(x, y).$

Разреженное представление в пространстве ММВП

Для получения разреженного представления в ММВП необходимо подавить все немаксимумы. В процессе подавления немаксимумов используются модуль и направление градиента:

$$Mf(x,y) = \sqrt{|W^{(x)}f(x,y)|^2 + |W^{(y)}f(x,y)|^2}$$
$$Af(x,y) = \operatorname{arctg}\left(\frac{W^{(y)}f(x,y)}{W^{(x)}f(x,y)}\right),$$

')|²,

Разреженное представление в пространстве ММВП

Алгоритм представляет собой итерацию по всем пикселям изображения, где для каждого пикселя выполняется следующие действия:

1) квантование угла Af(x, y) до кратного 45° (для определения направления вектора градиента);

2) проверка соседних пикселей с текущим по направлению градиента. Если текущий пиксель больше соседних по модулю Mf(x, y), то он остается.

Разреженное представление в пространстве ММВП

Пример изображения в пространстве максимумов модуля вейвлет-преобразования:

б

Восстановление из пространства ММВП

Алгоритм восстановления реконструирует изображение \hat{f} с минимальной нормой, такое, что

$$\widetilde{M}f(u_p,v_p) = \langle f,\psi_p^{(d)}\rangle, \qquad d \in \{x,y\},$$

Таким образом, \hat{f} – это ортогональная проекция f на замкнутое пространство V, генерируемое семейством вейвлетов $\{\psi_p^{(x)}, \psi_p^{(y)}\}$. Данное семейство является фреймом для V. В это случае f представляется, как $f = L^{-1}g,$

С другой стороны
$$g$$
 можно определить используя \hat{f} следующим образом:

$$g = L\hat{f} = \sum_{d \in \{x,y\}} \sum_{p} \langle f, \psi_p^{(d)} \rangle \psi_p^{(d)}.$$

Восстановление из пространства ММВП

$$\hat{f} = L^{-1}g$$

 \hat{f} – восстановленное изображение, g – разреженное представление.

а

В

Использование пространства вейвлет-максимумов

Данный метод является улучшенной версией метода на основе двумерного ДВП. Его отличие состоит в обработке НЧ-компонент. Вместо НЧ-коэффициентов объединяются их «образы» в пространство вейвлет-максимумов. После чего выполняется восстановления НЧ-компоненты объединенного изображения с использованием алгоритма восстановления двумерного ДВП.

ОДВП

Альтернативный подход на основе многополосного ДВП

Эффективность многополосных ДВП на основе L2L преобразований в сжатии изображений высока. Одним из таких преобразований могут быть разделимые 8-канальные параунитарные банки фильтров с линейной ФЧХ на основе алгебры кватернионов (*Q*-ПУБФ)

Факторизация банка фильтров анализа (число каналов 8, порядок факторизации 2)¹:

$$\begin{split} \boldsymbol{E}(z) &= \boldsymbol{G}_{N-1}(z)\boldsymbol{G}_{N-2}(z)\dots\boldsymbol{G}_{1}(z)\boldsymbol{E}_{0}; \boldsymbol{E}_{0} = \frac{1}{\sqrt{2}}\boldsymbol{\Phi}_{0}\boldsymbol{W} \cdot diag(\boldsymbol{I}_{M/2},\boldsymbol{J}_{M/2}); \boldsymbol{G}_{i} = \frac{1}{2}\boldsymbol{\Phi}_{i}\boldsymbol{W} \\ \boldsymbol{\Phi}_{i} &= diag(\boldsymbol{\Gamma},\boldsymbol{I}_{4}) \cdot diag(\boldsymbol{M}^{-}(Q_{i}), \boldsymbol{M}^{-}(Q_{i})) \cdot diag(\boldsymbol{M}^{+}(P_{i}), \boldsymbol{M}^{+}(P_{i})) \cdot diag(\boldsymbol{\Gamma}_{1}, \boldsymbol{\Phi}_{N-1}) \\ \boldsymbol{\Phi}_{N-1} &= diag(\boldsymbol{J}_{4},\boldsymbol{I}_{4}) \cdot diag(\boldsymbol{M}^{-}(Q_{i}), \boldsymbol{M}^{-}(Q_{i})) \cdot diag(\boldsymbol{M}^{+}(P_{i}), \boldsymbol{M}^{+}(P_{i})) \cdot diag(\boldsymbol{M}^{-}(Q_{i})) \cdot diag(\boldsymbol{M}^{+}(P_{i}), \boldsymbol{M}^{+}(P_{i})) \cdot diag(\boldsymbol{M}^{-}(Q_{i})) \cdot diag(\boldsymbol{M}^{-}(Q_{$$

 $V\Lambda(z)W;$ **[**, **I**₄); $(\boldsymbol{\Gamma}, \boldsymbol{I}_4)$

M. Parfieniuk and A. Petrovsky, "Inherently lossless structures for eight and six-channel linear-phase paraunitary filter banks based on quaternion multipliers," Signal Process., vol. 90, pp. 1755–1767, 2010.

Порядок применения операции слияния для многопослоного ДВП

Финальное изображение после слияния

Метрика качества слияния

Для введения метрики качества слияния изображений введем понятие взаимной информации, которое будет измерять степень сходства изображений А и В и будет вычисляться как расхождение Кульбака-Лейблера:

$$I_{AB} = \sum_{x,y} p_{AB}(x,y) ln \frac{p_{AB}(x,y)}{p_{A}(x)p_{B}(y)},$$

Тогда для оценки качества слияния изображений А, В и получившегося слияния F введем следующий критерий:

$$M_F^{AB} = I_{FA} + I_{FB}.$$

Который показывает общий объём информации, который содержит в себе результат слияния F об изображениях A и B.

База изображений и методика эксперимента

Для оценки качества методов слияния изображений использовался набор из 30 пар изображений со снимками КТ и МРТ из онлайн ресурса The Whole Brain Atlas. В ходе эксперимента

- 1) поочередно выбиралась пара изображений;
- 2) для каждой пары выполнялось слияние тремя методами;
- 3) вычислялась метрика качества слияния для результатов слияния.

Разница оценок

$$e_{DWT-WMM}(i) = M_{DWT}^{A_{i}B_{i}} - M_{WMM}^{A_{i}B_{i}},$$

$$e_{DWT-QFB}(i) = M_{DWT}^{A_{i}B_{i}} - M_{QFB}^{A_{i}B_{i}},$$

$$e_{WMM-QFB}(i) = M_{WMM}^{A_{i}B_{i}} - M_{QFB}^{A_{i}B_{i}},$$

Результаты экспериментов

В результате статистических тестов (непараметрического критерия знаков) были получено, что слияние с помощью двумерного ДВП, дает меньшее качество метрики слияния, чем ДВП с использованием представления НЧ-компонент ДВП в области модуля максимума вейвлет-преобразования и подхода на основе целочисленного полифазного представления банка фильтров, которые с среднем показывают одинаковый результат.

