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Abstract
A Skeleton that is extracted by a skeletonization algorithm from a binary image is useful for object description, matching, 
recognition and compression. The parallel thinning algorithm, one of the skeletonization algorithms is well known to have 
computational effciency. The main contribution of this paper is that we proposed a novel fully parallel thinning algorithm 
based on a comprehensive investigation of the well-known Zhang-Suen (ZS)-series algorithms and the one-pass thinning 
algorithm (OPTA)-series algorithms, which not only has good performance in terms of (8,4) connectivity preservation and 
single-pixel thickness, but also has the following qualities: it is more robust to the boundary noise than the OPTA-series 
algorithms and it is faster than the ZS-series algorithms in terms of thinning speed, as confirmed by the experiments pre-
sented in this paper.

Keywords Skeletonization · Noise immunity · Fully parallel · Connectivity · Thinning rate · Thinning speed

1 Introduction

Skeletonization is an elementary processing step in pattern 
recognition. The result of the skeletonization of a binary 
image is called the skeleton or medial axis, and it preserves 
the topological and geometric properties of the original 
image. The foundation of skeletonization was originally 
introduced by Blum [1] through an analogy with grassfires. 
An image object can be seen as a field of dry grass; fires 
will start simultaneously propagating inside the object at a 
uniform velocity, and the fires will quench at the point where 
they meet. These quenching points constitute the skeleton 
of the object [2–4]. Skeletonization methods can be divided 
into three major approaches [5, 6]: geometric, curve propa-
gation and digital approaches.

Methods based on a geometric approach compute the 
skeleton of an object by focusing on the geometric proper-
ties of Blum’s medial axis. Under this category, the method 
based on Voronoi diagrams [7–9] is popular. The drawback 
of the Voronoi method is that it produces a large number of 
unwanted branches.

Methods based on curve propagation approaches [2, 3], in 
which the evolution process is modeled by partial differential 
equations, simulate the process of generating Blum’s skel-
eton. The flaw of continuous curve propagation approaches 
is that the result of such methods may not be topologically 
connected [10].

The digital approach, which is also called the thinning 
algorithm, uses iterative removal on a digital grid under pre-
defined geometric and topological rules to simulate the prop-
agation process of Blum’s grassfire [5]. Digital approaches 
can be further divided into full kernel-based iterative algo-
rithms, iterative boundary peeling algorithms under geomet-
ric and topological rules and distance transform algorithms 
[11]. The main merit of the distance transform algorithm is 
that it does not require repetitive image scans, which leads to 
high computational efficiency. However, this approach may 
be hard to parallelize.

Skeletonization algorithms may also be classified into 
parallel and sequential algorithms [12] in terms of compu-
tational efficiency. The computational efficiency of the itera-
tive digital approach can be increased by using the technique 
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of parallelization, and such iterative algorithms are referred 
to as parallel thinning algorithms. Parallel thinning algo-
rithms can be divided into three major partitions according 
to the different parallelization strategies they use: fully par-
allel algorithms [13–20], sub-iteration parallel algorithms 
[21–33] and subfield parallel algorithms [34–36]. The fully 
parallel algorithm applies the same deletion criteria at every 
iteration. The sub-iterative parallel algorithm alternately 
uses a small set of removal conditions rather than using the 
same removal condition. Subfield parallel algorithms parti-
tion the image into subsets. In each iteration, a parallel dele-
tion condition is applied to only one subfield of the partition.

A good parallel thinning algorithm should have the fol-
lowing important properties [22, 42]: the skeleton results 
must be one-pixel thick; the skeleton results must approxi-
mate the medial axis of the original image; the thin curves 
and endpoints of the original image must be preserved; the 
connectivity of the original image must be preserved; the 
parallel speed should be as fast as possible; slight noise 
appearing near the boundary should not greatly affect the 
resulting skeleton.

The ZS algorithm [21] is one of the most widely used 
sub-iterative parallel algorithms and is also considered a 
directional method in some studies. The ZS algorithm is 
well known for its ease of implementation since it uses 
only simple logical conditions. Additionally, the ZS algo-
rithm performs very well with respect to both insensitivity 
to contour noise and connectivity. However, the ZS algo-
rithm also has some potential problems, which are described 
in later sections. Many algorithms have been proposed to 
address the problems remaining in the ZS algorithm, such 
as those described in [22–33]. The OPTA algorithm [13] is 
a fully parallel thinning algorithm that accelerates the thin-
ning speed by reducing the number of iterations but suffers 
from the influence of edge noise. As a result, many modi-
fied versions have been proposed, such as those proposed 
in [14–20].

In this paper, a novel fully parallel algorithm is proposed 
that combines robustness (one of the merits of the ZS series) 
and high speed (one of the merits of the OPTA series). In 
addition, the skeleton produced by this algorithm is exactly 
one-pixel thick and provides a good visual effect.

The remainder of this paper is organized as follows: 
Sect. 2 introduces some of the basic notations used in this 
paper. Section 3 reviews four recent ZS-series algorithms 
and three recent OPTA-series algorithms. The proposed 
algorithm is presented in Sect. 4, and the proof of topology 
preservation of the proposed algorithm is given in Sect. 5. 
Section 6 introduces some measures used to evaluate the 
algorithms. The three conducted experiments are described 
in Sect. 7, and the results of the different algorithms are 
compared. Finally, Sect. 8 concludes this article.

2  Basic notations

In this paper, a pixel (point) is a closed square in the Euclid-
ean plane, which has four edges and four vertices. The 
edges of one pixel are parallel to the coordinate axis, whose 
lengths are 1. If two pixels are distinct and they share at 
least one vertex, they are said to be adjacent. One pixel is 
said to be a neighbor of another pixel if they are adjacent. 
For a pixel in a 2D image, there are most 8 neighbors. The 
4-neighborhood of pixel P(i, j) , whose row coordinate is i 
and column coordinate is j, comprises the 4 neighboring pix-
els that share a common edge with pixel P. This neighbor-
hood set is denoted by N4(P) . The D-neighborhood of pixel 
P comprises four diagonal neighbors that share a common 
vertex with it and are denoted by Nd(P) . The points of N4(P) 
and Nd(P) (as shown in Fig. 1) are determined based on the 
concept of the 8-neighborhood of pixel P, denoted as N8(P).

In a binary image, the value of a pixel can only be 0 or 1; 
0-valued pixels are called 0’s and constitute the background. 
Similarly, 1-valued pixels are called 1’s and constitute the 
foreground.

A foreground point can be considered an edge pixel when 
at least one of its 8-neighborhood belongs to the background. 
An end point refers to a foreground pixel that has only one 
foreground neighbor in its 8-neighborhood.

3  Literature review

3.1  ZS‑series algorithms

3.1.1  The ZS algorithm

In 1984, Zhang and Suen proposed the ZS algorithm [21], 
which operates on an 8-neighborhood, as shown in Fig. 2.

The ZS algorithm has two sub-iterations: the first sub-
iteration removes southeast edge pixels and northwest corner 
points, while the second sub-iteration removes northwest 
edge pixels and southeast corner points.

Fig. 1  The definition of N
4
(P) and N

d(P)
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During the first sub-iteration, a pixel P will be deleted 
from the original digital image if it meets the following 
conditions:

In the second sub-iteration, the last two conditions are 
modified as follows:

A(P) is the number of pairs (0,1) in the ordered set 
P1,P2,⋯ ,P8 that are the eight neighbors of P, and B(P) 
denotes the sum of foreground pixels in N8(P).

Due to the simple conditions mentioned above and the 
separate processing of boundaries with different directions 
in each sub-iteration, the ZS algorithm is both fast and insen-
sitive to boundary noise. However, it has three main draw-
backs [22]:

(1) The complete disappearance of 2 × 2 square patterns 
prevents the algorithm from extracting some small 
image details.

(2) The output skeleton does not always have a single-pixel 
thickness, increasing the difficulty of directly using the 
results in some applications.

(3) The ZS algorithm suffers from excessive erosion of 
diagonal lines.

(1)2 ≤ B(P) ≤ 6

(2)A(P) = 1

(3)P1 × P3 × P5 = 0

(4)P3 × P5 × P7 = 0

(5)P1 × P3 × P7 = 0

(6)P1 × P5 × P7 = 0

(7)A(P) =
∑4

a=1

(

P2a−1 × P2a + P2a × P(2a+1)mod8

)

(8)Pa = 1 − Pa

(9)B(P) =
∑8

a=1
Pa

3.1.2  The Tarabek algorithm

To overcome the drawbacks of the ZS algorithm, the Tara-
bek algorithm was proposed in 2012 [24]. This algorithm 
not only avoids removing 2 × 2 squares and diagonal line 
patterns by adding several conditions but also generates a 
comprehensively single-pixel-thick skeleton by introduc-
ing a postprocessing step. The runtime of this method is 
approximately the same as that of the ZS algorithm. The 
author asserted that the Tarabek algorithm could potentially 
improve the accuracy of shape analysis.

3.1.3  The RIEPTA algorithm

The RIEPTA algorithm [32] was proposed by Rui Liu and 
Xiaoyu Zhang to address the defects of redundant branches 
caused by non-smooth contours. It eliminates the restric-
tions of the iterative scaling mechanism, avoids the branch-
ing phenomenon effect on the pixel points of off-smooth 
contours and ensures efficient refinement. RIEPTA has good 
robustness against noise, redundant branches and thin lines, 
it guarantees efficient refinement, and it has good robust-
ness and practical application value. In addition, it solves the 
3 × 4 rectangular erosion problem of the ZS algorithm. The 
RIEPTA algorithm yields a line with two pixels rather than 
the one-pixel produced by the ZS algorithm to represent that 
the shape is rectangular.

3.1.4  The MZS algorithm

Lynda Ben Boundaoud, Basek Solaiman and Abdelkamel 
Tari proposed a modified ZS thinning algorithm using a 
hybrid approach (called the MZS algorithm) that combines 
the directional approach used by the ZS algorithm and the 
subfield approach to avoid the ZS algorithm’s problems of 
excessive erosion and at the same time ensure a one-pixel 
skeleton thickness [22]. The MZS algorithm adds the con-
dition that the parity of the sum of the coordinates of each 
pixel needs to be checked in each sub-iteration of the ZS 
algorithm. Furthermore, it integrates an additional condition 
into the second sub-iteration to preserve the tiny square pat-
terns, minimizing the appearance of spurious branches and 
avoiding the excessive erosion of slanting lines.

3.2  OPTA‑series algorithms

3.2.1  The OPTA algorithm

To reduce the time consumed by the multi-pass methods, a 
one-pass parallel thinning algorithm called the OPTA algo-
rithm was proposed by Roland T. Chin et al. This algorithm 
uses a set of 3 × 3 thinning templates (as shown in Fig. 3). 
Two other restoring templates (whose sizes are 4 × 1 and 

Fig. 2  The 8-neighborhood of 
the ZS algorithm
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1 × 4) are applied to address the breakage and disappear-
ance of horizontal and vertical limbs with double-pixel 
thicknesses [13] (as shown in Fig. 4), where the ‘x’ symbol 
denotes ignorable pixels, whose value can be either 0 or 1. 
Additionally, eight trimming templates (as shown in Fig. 4) 
are adopted to eliminate noise in each iteration to avoid pro-
ducing spurious branches. However, this method can cause 
another problem in which the end points of object patterns 
are not preserved. In particular, in some extreme situations, 
if a limb with a one-pixel width is thinned so the object 
shape degenerates into a single pixel.

3.2.2  The OPTA4 algorithm

A new one-pass parallel thinning algorithm for binary 
images called OPTA4 was proposed by Rei-Yao Wu et al. 
[15]. They elaborated a new set of matching templates 
derived from the idea of asymmetry that eliminated the need 

to distinguish between restoring templates, thinning tem-
plates and trimming templates. When an object is thinned, 
the pixels on one side of the object are deleted according 
to preset preferences; however, the pixels on the other side 
are preserved. Wu and Tsai’s algorithm is both unique and 
fast; it is one of the fastest parallel algorithms. However, the 
resulting skeletons do not always retain the structures of the 
initial objects in some of the produced patterns (e.g., they 
completely remove 2-by-2 squares).

3.2.3  The FCTA algorithm

The FCTA algorithm proposed by Lei Guan et al. [19] is an 
improved text image thinning algorithm based on a study 
of the classical OPTA algorithm; it addresses the defects of 
breakdowns and thinning incompleteness. The FCTA algo-
rithm deploys eight thinning templates and four restoring 
templates. All these templates work on a 14-pixel neighbor-
hood field. The authors reported that their method has a very 
fast thinning speed compared with other algorithms and that 
it ensures both the feature integrity and the connectivity of 
the original image.

4  The proposed algorithm

A novel fully parallel algorithm is proposed in this section 
that combines the advantages of the ZS-series and OPTA-
series algorithms to address the previously mentioned draw-
backs. The proposed algorithm uses a 20-pixel neighborhood 
that extends the standard 3 × 3 neighborhood, as shown in 
Fig. 5.

The new algorithm includes two procedures: a basic 
thinning procedure and a postprocessing procedure. The 
thinning procedure applies 13 templates in total, of which 
two are restoring templates, one is a compulsory deletion 
template (shown in Fig. 6), and the others are extra deletion 
templates (shown in Fig. 7).

In the thinning process of the proposed algorithm, our 
restoring templates, which are modified based on templates 
(i) and (j) of the OPTA algorithm, and the compulsory dele-
tion template work together in the case that the first two 
conditions (see formulas (1) and (2)) of the ZS algorithm 
hold. Therefore, in our algorithm, A(P) and B(P) also need to 
be calculated according to formulas (7) and (9), respectively.

Fig. 3  Thinning templates

Fig. 4  Restoring and trimming templates

Fig. 5  The 20-pixel neighbor-
hood used in the proposed 
algorithm
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The restoring templates are designed to prevent the com-
plete removal of patterns with a small fraction. This works 
well in the OPTA algorithm; however, the drawback of 
deploying restoring templates is that they may retain more 
pixels than we need. As a result, a compulsory deletion 
template is necessary to delete excessive pixels that may be 
retained by the restoring templates. Thus, here, the priority 
of a compulsory template is higher than that of a restoring 
template. A candidate foreground pixel is removed when 
its neighbors do not match any of the restoring templates or 
match one restoring template but also match the compulsory 
deletion template.

By modifying formulas (1) and (2), two more conditions 
are given, as follows:

The extra deletion templates will be used to delete fore-
ground pixels when these two conditions hold. In fact, for-
mulas (10) and (11) mainly work as filters, which is helpful 
in selecting foreground pixels that may succeed in matching 
the extra deletion templates. This can effectively avoid com-
paring the neighborhood of every pixel that does not satisfy 
formulas (1) and (2) with 10 extra deletion templates, which 
may accelerate the thinning speed.

(10)4 ≤ B(P) ≤ 5

(11)A(P) = 2

The extra deletion templates are supplementary tem-
plates, which are used to delete some pixels P that temporar-
ily fail to satisfy formulas (1) and (2). These pixels have the 
common property that their parallel deletion does not break 
the original topology. They can constitute an 8-deletable set 
with adjacent foreground pixels that meet the deletion condi-
tion (the concept of the 8-deletable set will be given later).

In Fig. 7., the symbols ‘0’, ‘1’, ‘P’ and ‘x’ in these tem-
plates denote a background pixel, a foreground pixel, the 
currently tested pixel and an ignorable pixel, respectively, 
whereas ‘t’ denotes that at least two of the pixels represented 
by the set of symbols should be a foreground pixel. The 
symbols ‘E1’, ‘E2’, ‘G1’ and ‘G2’ are defined as special 
symbols that should satisfy the following rule: the values of 

Fig. 6  Restoring and compulsory deletion templates

Fig. 7  Extra deletion templates
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two arbitrary pixels in a given template marked as identical 
special symbols should be equal. The difference between 
‘E1’ and ‘E2’ and ‘G1’ and ‘G2’ is mainly that the value 
of a pixel marked as ‘E1’ and the value of a pixel marked 
as ‘E2’ are independent; however, the sum of the values of 
a pixel marked as ‘G1’ and another pixel marked as ‘G2’ 
should be greater than 1.

A postprocessing procedure is used after the thinning pro-
cedure. Four conditions are applied to examine each pixel to 
ensure a single-pixel skeleton thickness. A foreground pixel 
is deleted when its neighbors satisfy one of the following 
conditions:

The proposed algorithm is described in Algorithm 1.

(12)P1 × P3 × P6 = 1

(13)P3 × P5 × P8 = 1

(14)P5 × P7 × P2 = 1

(15)P7 × P1 × P4 = 1
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5  Proof of topology preservation

5.1  Ronse’s conditions for topology preservation

It is more convenient to conduct the proof of topology pres-
ervation for the proposed algorithm by introducing some 
terms.

Terms such as i-path, i-connected and i-component are 
used in same sense as in [37] for i = 4 and 8. C(P) is defined 
as the number of distinct 8-components of 1’s in N8(P) of 
pixel P. A foreground pixel is defined as a border if its N4(P) 
contains a 0. We say that a foreground pixel P is 8-simple if 
C(P) = 1 and P is a border.

In terms of the topology (connectivity), the foreground 
and background are understood to have 8-connectivity and 
4-connectivity, which are denoted as (m, n) connectivity, 
where m is 8 and n is 4.

Many methods [38–42] have been proposed to examine 
topology (connectivity) preservation. Here, we start from an 
early connectivity preservation proof for the parallel thin-
ning algorithm [40].

A reduction operation O, which is used in the deletion 
condition in the parallel thinning algorithm to change a fore-
ground pixel into a background pixel, is said to preserve (m, 
n) connectivity if all of the following properties hold:

1. An m-component of the foreground is not split into two 
or more m-components of the foreground after applying 
reduction operation O.

2. An m-component of the foreground is not completely 
deleted by the use of reduction operation O.

3. Two or more n-components of the background will not 
merge into one n-component of the background after the 
use of reduction operation O.

4. No new n-components of the background are created by 
the use of reduction operation O.

Based on this classical early method, Ronse [38, 39] pre-
sented a rather simple, local set of sufficient conditions for 
a reduction operator O to preserve (8,4) connectivity. He 
defined the concept of an 8-deletable set in which a pair 
of 8-simple 1’s, {p, q}, is 8-deletable if and only if q is 
8-simple after p is deleted. This set can be deleted while 

maintaining the connectivity of the image. The follow-
ing sufficient conditions for topology preservation can be 
derived from Ronse’s result [41]:

1 If a foreground pixel is deleted by the reduction opera-
tion, then it must be 8-simple.

2 If two 4-adjacent foreground pixels are both deleted by 
the reduction operation, then they must constitute an 
8-deletable set.

3 No 8-component composed of two, three or four mutu-
ally 8-adjacent foreground pixels is completely deleted 
by the reduction operation.

Here, we use Ronse’s method to prove the connectivity 
preservation of our algorithm.

5.2  Ronse’s first condition holds in the proposed 
method

In this case, we suppose the restoring template does not 
work to simplify the discussion. (This is because the func-
tion of the restoring template is to retain some pixels rather 
than delete some pixels.) When B(P) is within the range 
of 2 to 6 and A(P) is equal to 1, all the kinds of patterns 
of 8-neighbors of pixels that meet the above condition can 
be categorized into 5 different patterns (all other patterns 
can be obtained by rotating 45 degrees clockwise in inte-
ger multiples), which are shown in Fig. 8. It is obvious that 
they are all 8-simple. It may not easily be found that pixel 
P in the compulsory deletion template is 8-simple because 
there may be doubt that C(P) is not equal to 1. However, 
the compulsory deletion template works only when A(P) is 
equal to 1 (see line 10 of the pseudocode in Algorithm 1). 
As a result, the compulsory deletion template should look 
like Fig. 9, in which the ‘x’ in the upper left corner of P can 
only be 0 and the ‘x’ in the lower right corner can only be 1. 
This can be recognized as patterns 2, 3 or 4 in Fig. 8. Then, 
we find that pixel P in the compulsory deletion template is 
indeed an 8-simple pixel.

For the extra deletion templates, it is obvious that all pix-
els P are 8-simple pixels.

Fig. 8  Different patterns of pixel P and its 8-neighbor

Fig. 9  Compulsory deletion 
template under the condition 
that A(P) is 1
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5.3  Ronse’s second condition holds in the proposed 
method

We temporarily assume that pixel P and all the pixels 4-adja-
cent to it are 8-simple pixels in the patterns in Fig. 8. In 
addition, they and their 8-neighbors either do not match 
any of the restoring templates or do match with the com-
pulsory deletion template in the case that B(P) is greater 
than or equal to 2 but not more than 6 and that A(P) is one, 
which is the current reduction operation. For convenience, 
the symbols q1, q2, q3 and q4 are used to denote the north 
foreground pixel, east foreground pixel, south foreground 
pixel and west foreground pixel that are 4-adjacent to pixel 
P, respectively.

In pattern 1 (Fig. 8), q1 cannot be deleted by the reduction 
operation because the minimum value of A(q1) is 2, whereas 
in the current assumption, A(q1) should equal 1. In this case, 
only pixel P can be deleted.

In pattern 2, there are two pixels 4-adjacent to pixel P, 
which are pixels q1 and q2; here, q1 is taken as an example. 
According to our assumption, q1 should be the pixel that can 
be deleted by the current reduction operation and should be 
an 8-simple pixel. As a result, there are only 4 possible sub-
patterns, which are shown in Fig. 10.

After P is deleted, N8(q1) in sub-pattern 1, sub-pattern 2, 
sub-pattern 3 and sub-pattern 4 belong to pattern 4, pattern 
3, pattern 2 and pattern 1 in Fig. 8., respectively. Therefore, 
q1 is still an 8-simple pixel after the removal of pixel P. The 
same proof can also be conducted on pixel q2. As a result, 
we can conclude that the set of {P, q1} and {P, q2} are 
8-deletable sets.

Note that pixel q2 in pattern 3 cannot be deleted by the 
reduction operation because N8(q2) does not belong to any 
of the patterns in Fig. 8 regardless of which combination 
of values (0 or 1) it takes in its rightmost extended column. 
In contrast, q1 is an 8-simple pixel and can be deleted by 
our deletion condition, and the set {P, q1} constitutes an 
8-deletable set. The proof of this is the same as the one for 
pattern 2.

In pattern 4, q1 and q3 can be proven by using the same 
proof as in pattern 2. Pixel q2 cannot be a removable pixel 
that satisfies the reduction operation because if q2 is a 
removable pixel, pixel P will match restoring template (a) 
but will not match the compulsory deletion template. Then, 

pixel P will become a restoring pixel, which contradicts our 
assumption.

In pattern 5, only q1 is an 8-simple pixel and can be 
deleted by reduction operations. Pixel q2 faces the same 
situation as pixel q2 in pattern 4, which cannot be a remov-
able pixel. Pixel q3 in pattern 5 cannot be deleted by the 
reduction operation, which is similar to the case of pixel q2 
in pattern 3.

Thus far, we have proven that the 8-simple pixels in pat-
terns 1 to 5, which are 4-adjacent to pixel P and meet the 
deletion conditions, are still 8-simple pixels after the dele-
tion of pixel P. They can constitute a deleted set with pixel P.

Since the compulsory deletion template can be considered 
as patterns 3 to 5, the proof for the compulsory deletion 
template can follow the proofs for patterns 3 to 5.

Now, we prove that the extra deletion templates also meet 
Ronse’s second condition. In this case, we take the extra 
deletion template (d) as an example, as shown in Fig. 11. 
We denote P as q. The pixel that is the north neighbor of 
P is denoted by a lowercase p. Note that p can be deleted 
because it belongs to pattern 1, and q can also be deleted 
because it matches the extra deletion template. Addition-
ally, these are all 8-simple pixels. Suppose now that pixel 
p is deleted; pixel q is still an 8-simple pixel because it can 
belong to pattern 2 or pattern 3. Then, we can use the proof 
of pattern 2 or pattern 3 to prove that set of {q, q2} and {q, 
q3} are 8-deletable sets if q2 and q3 meet the reduction con-
ditions. The proofs for the extra deletion templates (e) to (k) 
are similar to this procedure. In Templates (l) and (m), there 
are not 4-adjacent foreground pixel can be parallel deleted.

5.4  Ronse’s third condition holds in the proposed 
method

In [39], a test set for the last Ronse condition was presented, 
as shown in Fig. 12. The result of our algorithm is shown 
in Fig. 13. All the fraction patterns have been retained. The 
result confirmed that the last Ronse condition also holds in 
our algorithm.

Thus far, we have proven that all three Ronse conditions 
hold in our algorithm. Therefore, our algorithm has the char-
acteristic of topology preservation.

Fig. 11  The process of removing pixel P 
Fig. 10  Four possible sub-patterns
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6  Measures used for comparison

To evaluate the proposed algorithm, several measures are 
defined for comparison purposes.

6.1  Measures for evaluating unit‑width pixels

A measurement method of convergence to unit width was 
proposed in [14]. A skeleton S is one-pixel wide if and only 
if skeleton S does not contain any of the patterns Qn , as 
shown in Fig. 14. The indicator mt is introduced to measure 
the width of the resulting skeleton:

where Area[] is an operation that counts the number of fore-
ground pixels. Θ is an operation of erosion and, in fact, Qn 
are structuring elements.m

t
 is a non-negative value no larger 

than one. S is an ideal single-width skeleton when mt is one.

6.2  Parameter for evaluating the sensitivity 
to boundary noise

Let I be a given image without boundary noise and I′′ be 
the noisy version of it obtained by randomly removing or 
adding some pixels along the edge of I . The concept of the 
signal-to-boundary noise ratio (SBNR) was defined in [17] 
as follows:

(16)mt = 1 −
Area

[

∪4
n=1

(SΘQn)
]

Area[S]

where �I denotes the boundary of I and I��∕I denotes the 
pixels that belong to set I′′ but do not belong to set I . Thus, 
the error caused by boundary noise at a particular SBNR can 
be measured by the normalized quantity

where S  is the resulting skeleton of I and S′′ is the resulting 
skeleton of I′′ . Algorithms that are highly sensitive to bound-
ary noise will yield a m

e
 value close to 1.

6.3  Parameter for evaluating speed

The thinning speed (TS) was proposed in [22] to measure 
the number of pixels thinned per time unit (seconds), and it 
is computed as follows:

where execution time (ET) is the actual time consumed by 
the algorithm to skeletonize the binary picture on a com-
puter, deleted pixels (DP) is the number of foreground 
pixels removed during the thinning procedure, and object 
pixels (OP) is the number of foreground pixels in the origi-
nal image. Skeletal pixels (SP) is the number of foreground 
pixels remaining in the skeleton.

In addition, we use the measure of the number of itera-
tions (NIT). NIT counts the number of iterations. Generally, 
a faster algorithm has fewer iterations. One iteration can be 
considered a full scan of the image, in which many fore-
ground pixels are transformed to background pixels.

7  Experiments and results

The proposed algorithm, ZS-series algorithms (including the 
ZS, Tarabek, RIEPTA and MZS algorithms), and the OPTA-
series algorithms mentioned above were implemented in the 
C +  + programming language. Simple test, boundary noise 
test and complex image test were conducted to evaluate the 
performances with regard to thinning rate, noise sensitivity, 
and computational speed.

In the first test, the test picture is deliberately designed 
according to the known drawbacks of the algorithms.

The boundary noise test starts with a simple rectangle, 
from which every algorithm can extract a clean skeleton 
(ignoring differences in the skeleton shape between them), 

(17)SBNR =
Area[�I]

Area
[

I��∕I]+Area[I∕I��
]

(18)m
e
= min

[

1,
Area

[

S∕S��]+Area[S��∕S
]

2 × Area[S]

]

(19)TS =
DP

ET

(20)DP = OP − SP

Fig. 12  Test set for the last Ronse condition

Fig. 13  Test result of the proposed algorithm

Fig. 14  Templates used to test the width of the skeleton
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and then we manually set the probability of mutation (noise 
level) of the boundary pixels, which gradually increases 
from 2.5% to 20%. We randomly add this noise to the bound-
ary of the original image and observe the response of these 
algorithms to the noise.

Finally, in the last test, we use more complex test images, 
which mainly come from the famous datasets Kimia-99, 
MPEG-7, and DRIVE. We add some images of Chinese 
characters collected from the internet. The benchmark data-
set usage is shown in Table. 1.

7.1  Simple test

As shown in Fig. 15, a simple pattern consisting of a 2 × 2 
square (top center of the original image), a 3 × 3 square (on 
the left), a 3 × 4 rectangle (on the right), a 3 × 6 rectangle (at 
the bottom) and crossed, sloped lines was designed to test 
the performances of the different algorithms.

The test image and the results of the various algorithms 
are shown in Fig. 15, where the gray pixels are the original 
shape and the black superposed black pixels are the skeleton.

Clearly, the ZS algorithm and the RIEPTA algorithm suf-
fer from severe excessive erosion problems on the crossed 
lines and preserve only the door-like shapes in the center. 
These two algorithms completely delete all four pixels of 
the 2 × 2 pattern located at the top of the original picture, 
leaving nothing. Furthermore, the 3 × 3 square located on the 
left of the original picture and the 3 × 4 rectangle located on 
the right are processed by the ZS algorithm in the same way, 
which can be considered another outcome of the excessive 
erosion problem. The Tarabek algorithm and the MZS algo-
rithm largely address the drawbacks of the complete disap-
pearance of the 2 × 2 pattern and the erosion of the crossed 
lines resulting from the ZS algorithm, but their results still 
fail to distinguish between the 3 × 3 square and the 3 × 4 
rectangle. In addition, MZS suffers from a new erosion prob-
lem—the 3 × 6 rectangle at the bottom yields only one pixel, 
which does not represent the original pattern well.

The OPTA algorithm preserves the topology of the initial 
shape well, but it is unable to ensure a one-pixel thickness 
for the crossed lines. The shortcoming of the OPTA4 algo-
rithm is that it loses the 2 × 2 pattern. The skeleton pro-
duced by FCTA fails to distinguish between the square and 
the rectangle. The proposed algorithm preserves the topol-
ogy of the original pattern well without excessive erosion 
of the intersecting lines and ensures a one-pixel thickness 

Fig. 16  Skeleton resulting from the clean pattern

Table. 1  Dataset usage

Dataset Name KIMIA-99 DRIVE MPEG-7

Total image number 99 20 1402
Usage 99 20 752

Fig. 15  The original pattern and skeletons of the simple pattern pro-
duced by the various algorithms
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throughout. The proposed algorithm properly identifies the 
rectangle and square, representing the square and the rectan-
gle by an individual pixel and by several successive pixels, 
respectively.

7.2  Boundary noise test

In this section, we first build an ideal rectangular pattern, 
whose size is 5 by 18. Then, eight thinning algorithms are 
used to extract the skeleton. The results are shown in Fig. 16, 
where the gray pixels are the original pattern and the black 
pixels are the skeleton.

To study the robustness, which mainly concerns the 
results of the algorithm under boundary noise, we temporar-
ily ignore the difference in the shape of the skeleton between 
different algorithms and consider the skeletons extracted 
from the clean pattern as the clean skeletons. These clean 
skeletons will be compared with those generated from the 
noisy pattern by the same algorithm. The parameters of 
SBNR and me , which were introduced in Sect. 6.2, will be 
used in this section to evaluate the results.

The noise pattern is generated by randomly adding some 
pixels (changing a background pixel to a foreground pixel) 
or removing some pixels (changing a foreground pixel to a 
background pixel) along the boundary of the clean pattern 
with a given probability, which is also said to be the noise 
level.

The whole test is divided into eight subtests according to 
the different noise levels, which start at 2.5% and gradually 
increase to 20%, and the increment is set to 2.5%. In each 
subtest, noise is randomly added to the original boundary, 
and all 8 thinning algorithms are used to extract the skel-
etons. To objectively evaluate the robustness of the thin-
ning algorithms, each subtest is conducted independently 
100 times. Figures 17, 18, 19 and 20 present noisy images 
(gray pixels) under noise levels of 5%, 10%, 15% and 20%, 
respectively, and the results (black pixels) generated by the 
thinning algorithms superposed on these images. In addi-
tional, for convenience in comparing, we, respectively, mark 
the original pattern and initial clean skeleton with blue and 
green colors. Table 2 presents the confidence interval of the 
whole test.

Figures 17, 18, 19 and 20 give an intuitive sense of the 
robustness of the different thinning algorithms. In Fig. 17, 
from the perspective of visual effect, FCTA and RIEPTA and 

Fig. 17  Under 5% boundary noise, SBNR = 8.4; ZS: m
e
 = 0.038; 

Tarabek:m
e
 = 0.038; RIEPTA:  m

e
 = 0.166; MZS: m

e
 = 0.136; OPTA: 

m
e
 = 0.321, OPTA4: m

e
 = 0.214; FCTA: m

e
 = 1; proposed: m

e
 = 0. 

(Original clean boundary and clean skeleton are colored with blue 
and green)

Fig. 18  Under 10% boundary noise, SBNR = 4.66; ZS: m
e
 = 0.038; 

Tarabek:m
e
 = 0.038; RIEPTA: m

e
 = 0.166; MZS: m

e
 = 0.272; OPTA: 

m
e
 = 1, OPTA4: m

e
 = 0.285; FCTA: m

e
 = 0.5; proposed: m

e
 = 0.035. 

(Original clean boundary and clean skeleton are colored with blue 
and green)
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the proposed algorithm yield good skeletons, whose shape 
seem to be the same as those extracted from the clean pat-
tern. In contrast, slight changes occur in the ZS, Tarabek 
and MZS results. However, from the perspective of the error 
parameter me , the performance of FCTA and RIEPTA is 
much worse than that of ZS, Tarabek and MZS. The rea-
son for this contradiction is that the slight movement of the 
location of the skeleton and the slight changes in the length 
of the skeleton are usually ignored by people; however, the 
parameter me is very sensitive to these changes and tends 
to give a high value to them. Regardless of the visual effect 
or the view of parameter comparison, the proposed algo-
rithm suppresses this faint boundary noise, whereas the 
skeletons resulting from OPTA and OPTA4 are relatively 
unsatisfactory.

In Figs. 18, 19 and 20, as the noise level increases, an 
increasing number of unwanted branches are noticed in the 
skeletons, and the error caused by the boundary noise con-
tinues to ascend, which indicates that all the algorithms are 
influenced by boundary noise to different extents. Overall, 
our algorithm has a similar capacity in terms of anti-bound-
ary noise as the ZS, Tarabek and RIEPTA algorithms. These 

are followed by MZS and OPTA4. The OPTA algorithm is 
the most sensitive algorithm to boundary noise.

In Table 2, we present the confidence intervals of the 
signal boundary noise rate and that of the error caused by 
boundary noise me under different levels of noise. It can be 
seen that the lower and upper bound of the confidence inter-
val of SBNR are both continuously decreasing because an 
increasing number of noisy pixels appear near the primitive 
edge. By observing the parameter me , the proposed algo-
rithm has the best property tolerating the boundary noise.

7.3  Complex image test

This experiment was conducted to evaluate the algorithm 
performances in terms of single-pixel thickness and thin-
ning speed.

To determine the performances of these thinning algo-
rithms, the skeletons extracted from 6 different real-life 
binary patterns, which are a person, bonefish, airplane, 
Chinese character, retina and fingerprint, along with their 

Fig. 19  Under 15% boundary noise, SBNR = 3; ZS: m
e
 = 0.076; Tara-

bek:m
e
 = 0.076; RIEPTA: m

e
 = 0.75; MZS: m

e
 = 0.181; OPTA: m

e
 = 1, 

OPTA4: m
e
 = 0.357; FCTA: m

e
 = 1; proposed: m

e
 = 0.0357. (Original 

clean boundary and clean skeleton are colored with blue and green)

Fig. 20  Under 20% boundary noise, SBNR = 2.21; ZS: m
e
 = 0.384; 

Tarabek:m
e
 = 0.307; RIEPTA:m

e
 = 1; MZS: m

e
 = 0.318; OPTA: m

e
 = 1; 

OPTA4: m
e
 = 0.535; FCTA:m

e
 = 1; proposed: m

e
 = 0.285. (Original 

clean boundary and clean skeleton are colored with blue and green)
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original patterns, are shown in Figs.  21, 22, 23, 24, 25 
and 26. The visual effect is enhanced by using different 
colors to indicate mistakes. We use a red circle to denote a 

disconnected skeleton, a yellow circle to denote a skeleton 
with excessive erosion, and a blue circle to denote a skeleton 
without a single-pixel thickness.

Table 2  Confidence interval of the error caused by the boundary noise ( me ) of the eight algorithms under different noise levels

Noise 
Level

Confidence Interval (Confidence level is 95%, sample size at each noise level is 100)

SBNR Error caused by boundary noise me

ZS Tarabek RIEPTA MZS OPTA OPTA4 FCTA Proposed

2.5% [19.833, 
25.287]

[0.0184, 
0.0401]

[0.0182, 
0.0394]

[0.2004, 
0.3479]

[0.0232, 
0.0551]

[0.1816, 
0.2670]

[0.0502, 
0.7971]

[0.2321, 0.4179] [0.0063, 0.0173]

5.0% [10.705, 
14.241]

[0.0329, 
0.0609]

[0.0331, 
0.0607]

[0.3327, 
0.4738]

[0.0436, 
0.0763]

[0.3588, 
0.4569]

[0.0942, 
0.1336]

[0.4113, 0.6085] [0.0184, 0.0386]

7.5% [6.401, 7.690] [0.0399, 
0.0701]

[0.0405, 
0.0702]

[0.2946, 
0.4204]

[0.0648, 
0.1024]

[0.5574, 
0.6612]

[0.1384, 
0.1816]

[0.6086, 0.7913] [0.0315, 0.0543]

10.0% [5.114, 5.932] [0.0846, 
0.1340]

[0.0834, 
0.1319]

[0.4688, 
0.5895]

[0.1340, 
0.1868]

[0.7377, 
0.8265]

[0.2254, 
0.2817]

[0.6376, 0.8123] [0.0708, 0.1070]

12.5% [3.932, 4.417] [0.1044, 
0.1579]

[0.0991, 
0.1508]

[0.4687, 
0.5712]

[0.1385, 
0.1996]

[0.7996, 
0.8817]

[0.2792, 
0.3415]

[0.6414,0.8185] [0.0871, 0.1272]

15.0% [3.391, 3.849] [0.1327, 
0.2019]

[0.1308, 
0.1991]

[0.4801, 
0.5782]

[0.1709, 
0.2435]

[0.8494, 
0.9205]

[0.3392, 
0.4171]

[0.6425, 0.8174] [0.1131,0.1690]

17.5% [2.702, 2.969] [0.1789, 
0.2480]

[0.1755, 
0.2422]

[0.5613, 
0.6520]

[0.2460, 
0.3258]

[0.8991, 
0.9551]

[0.3924, 
0.4612]

[0.6973, 0.8626] [0.1571,0.2121]

20.0% [2.535,2.877] [0.2019, 
0.2857]

[0.1957, 
0.2765]

[0.5861, 
0.6822]

[0.2580, 
0.3464]

[0.9693, 
0.9913]

[0.4512, 
0.5373]

[0.7317, 0.8882] [0.1974, 0.2668]

Fig. 21  Skeleton results on the person image Fig. 22  Skeleton results on the bonefish image
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Fig. 23  Skeleton results on the airplane image

Fig. 24  Skeleton results on the character image Fig. 25  Skeleton results on the fingerprint image
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In the person image (Fig. 21.), the FCTA algorithm and 
the RIEPTA algorithm lost the head part (marked with a 
yellow circle), while the OPTA algorithm and the ZS algo-
rithm could not ensure a skeleton with single-pixel thickness 
(see the blue circle). The proposed algorithm, MZS algo-
rithm, OPTA4 algorithm and Tarabek algorithm preserved 
the original structure well, and the skeletons all have ideal 
single-pixel thicknesses.

For the bonefish image (Fig. 22), all 8 algorithms were 
able to maintain skeleton connectivity; however, not every 
algorithm was able to retain the shape embodied by the 
original image. Methods such as FCTA, OPTA and RIE-
PTA are good examples. In addition, a double-pixel problem 
occurred in the results of the OPTA and ZS algorithms.

As shown in Fig. 23, all four of the ZS-series algorithms 
eliminated the wing of the airplane to some degree. The 
ZS, Tarabek and MZS algorithms removed the left wing but 
preserved the right wing, whereas the RIEPTA algorithm 
removed both wings. Among the OPTA-series algorithms 
(excluding the FCTA algorithm), all of them preserved the 
basic shape of the original input image. The FCTA algorithm 
not only erased the left wing but also broke the connectiv-
ity of the plane. The broken sites are highlighted in red. 
Redundant pixels can be observed inside the blue circle in 
the ZS algorithm and OPTA algorithm results. The proposed 
algorithm and the OPTA4 algorithm were able to produce 
good results in terms of shape preservation and maintaining 
one-pixel thickness on the airplane image, but their skeletons 
seem slightly asymmetric in the axis of the airplane.

Figure 24 shows that on the Chinese character image, 
almost all the algorithms generated good results with regard 
to shape fidelity and connectivity except for the FCTA and 
RIEPTA algorithms. Both methods failed to preserve the 
basic shape, and erosion occurred in the lines enclosed by 
the yellow circles, which could cause recognition difficulties 
in some fields, such as optical character recognition (OCR).

The fingerprint image experiments (see Fig. 25) indicate 
that almost all the algorithms roughly preserved the primary 
structure of the original image, but some algorithms did not 
output a proper skeleton. The FCTA algorithm suffered from 
disconnection problems in the top right plane and lost the 
end points of some lines; these problems also occurred in 
the MZS and RIEPTA algorithms. The ZS algorithm and the 
OPTA algorithm are still plagued by double-width thickness 
problems. The proposed algorithm, along with the OPTA4 
and Tarabek algorithms, produced better results than the 
other algorithms.

On the retinal image (in Fig. 26), the skeletons of the 
blood vessels produced by the Tarabek algorithm, the 
OPTA4 algorithm and the proposed algorithm preserved 
both shape and connectivity. The FCTA algorithm generated 
two disconnected segments, and some algorithms, including 
MZS, ZS and RIEPTA, removed parts of some lines. The 

OPTA algorithm and the ZS algorithm yielded some thicker 
segments (marked in yellow).

A quantitative comparison in these test images of the 
parameters of the performances is shown in Table 3, based 
on the measures described in the previous section, for the 
proposed algorithm and the seven other algorithms in the 
experiments. The best and worst values are displayed in 
green and red, respectively.

The initial values (on the original images) are listed in 
the second column; object pixels (OP) can be obtained by 
counting all the foreground pixels. The results generated by 
the different algorithms are shown in the third to last col-
umns. From the resulting data, a comparison confirms that 
the proposed algorithm achieves better performance in terms 
of the characteristics below.

7.3.1  Thinness

Comparing the results in Table 3, RIEPTA, FCTA and the 
proposed algorithm are clearly the top three thinness algo-
rithms among the 8 algorithms in these images. If one con-
siders only the one-pixel-thick skeleton property, the RIE-
PTA algorithm earns first place in processing the bonefish, 
character and blood vessel images among these algorithms. 
However, for people and fingerprints, the proposed algo-
rithm is a better choice. The FCTA algorithm outperforms 
the other 7 algorithms on only the airplane image. The ZS 
algorithm performs the worst in terms of single-pixel thick-
ness and has the lowest mt value on all 6 images, followed by 
the OPTA, OPTA4, Tarabek and MZS algorithms.

7.3.2  Efficiency

Three main parameters describe algorithm efficiency: 
NIT, ET and TS. In Table 3, among the 8 algorithms, from 
the perspective of the number of iterations, the two fast-
est algorithms are the proposed algorithm and the OPTA4 
algorithm.

The ET results, which reflect the real execution times, 
largely support the above speculation but with some differ-
ences. On some images, the OPTA4 algorithm is not faster 
than the ZS algorithm. This is caused by the use of template 
matching for each pixel in the OPTA4 algorithm, which is 
a more complex operation than the simple logical opera-
tion that the ZS algorithm uses to find potentially remov-
able candidate points. In the proposed algorithm, not all 
deleted pixels are identified by template matching. In fact, 
most of them are removed through logical operations, which 
explains why the proposed algorithm is faster than all the 
other algorithms.

TS, a measurement parameter mentioned in the previ-
ous section, considers not only the time spent but also the 
number of removed pixels; therefore, it provides a more 
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Fig. 26  Skeleton results on the retina image



Pattern Analysis and Applications 

1 3

comprehensive indication of the efficiency of these algo-
rithms. From this viewpoint, the proposed algorithm retains 
its superiority in terms of speed, while the FCTA and RIE-
PTA algorithms are the two slowest.

The performance of the thinness and efficiency of these 
thinning algorithms in 871 test images are summarized in 
Tables 4, 5 and Tables 6, 7, respectively.

In both Tables 4 and 5, the value of mt is directly used 
as sample data. Table 4 presents the descriptive statistics of 
mt for different algorithms. Table 4 shows that the proposed 
algorithm has relatively good performance in terms of sin-
gle-pixel thickness (thinness), and its thinness abilities rank 
well among all 8 algorithms, second only to RIEPTA. Two-
factor ANOVA without a replication test was conducted, and 
the results are presented in Table 5.

From Table 3, it is reasonable to speculate that the pro-
posed algorithm has the highest efficiency among these 

algorithms. To study the time consumption of the proposed 
algorithm compared with that of the other 7 algorithms, the 
ratio of the execution time of our algorithm and the execu-
tion time of the other algorithms are used as new measures 
when the algorithms are performed on a large dataset. This 
new parameter is denoted as Rproposed . To understand this 
new parameter, an example is given. Suppose there exists 
another algorithm A, the Rproposed of A can be obtained by 
dividing ET of the proposed algorithm by that of the A algo-
rithm. If proposed algorithm is faster than algorithm A, then 
the Rproposed value should be less than 1. Otherwise, it should 
be larger than 1.

Table 6 shows that the mean values of ratio Rproposed are 
all less than 1, which means that in most of the test images, 
whose total number is 871, the proposed algorithm is faster 
than the others.

Table 3  Primary comparison of the performance in 6 complex images

Initial value PM ZS Tarabek RIEPTA MZS OPTA OPTA4 FCTA Proposed

People OP 2754 m
t

0.6720 0.9902 0.9892 0.9846 0.7920 0.9764 0.9887 0.9903
SP 247 205 186 195 250 212 178 208
NIT 24 24 36 25 33 19 31 19
ET (ms) 3.7042 4.0270 5.9139 3.5648 9.9584 3.8192 10.5771 2.8020
TS (p/s) 676,786 632,974 434,230 717,846 251,446 665,578 243,546 908,630

Bonefish OP 7206 m
t

0.69518 0.98734 0.99231 0.98101 0.74251 0.97041 0.98437 0.98717
SP 187 158 130 158 167 169 128 156
NIT 24 24 39 25 26 17 26 17
ET (ms) 8.7122 10.1619 14.2621 8.96732 10.0736 8.2616 13.8031 7.2927
TS (p/s) 805,647 693,571 496,138 785,965 698,753 851,772 512,785 966,726

Airplane OP 9942 m
t

0.4971 0.9829 0.9843 0.9781 0.9238 0.9497 0.9914 0.9879
SP 348 293 255 274 328 338 233 318
NIT 34 34 68 35 39 20 38 20
ET (ms) 8.8081 9.2063 15.4594 8.2761 11.1594 7.2667 10.1546 6.6397
TS (p/s) 1,089,215 1,048,086 626,610 1,168,187 861,517 1,321,647 956,116 1,449,472

Character OP 9946 m
t

0.8990 0.9884 0.9983 0.9841 0.9677 0.9651 0.9788 0.9956
SP 723 691 613 694 743 717 566 691
NIT 18 16 31 17 24 16 61 16
ET (ms) 8.5028 8.9272 11.8306 9.1671 7.8948 7.9192 14.3858 6.6874
TS (p/s) 1,084,696 1,036,711 788,887 1,171,902 1,003,919 1,165,382 652,033 1,383,939

Fingerprint OP 63,563 m
t

0.7267 0.9922 0.9957 0.9936 0.7841 0.9902 0.9950 0.9961
SP 6799 5826 5658 5822 6521 5853 5447 5702
NIT 18 18 27 19 23 15 25 15
ET (ms) 57.7111 59.5721 69.5280 56.0488 60.1683 52.7672 63.4155 51.9558
TS (p/s) 983,589 969,196 832,831 1,030,192 948,041 1,093,672 916,431 1,113,658

Blood Vessels OP 25,001 m
t

0.7551 0.9855 0.9948 0.9867 0.8688 0.9809 0.9883 0.9935
SP 8748 7699 7559 7548 8187 7697 7350 7616
NIT 11 10 20 11 13 7 23 7
ET (ms) 17.6103 19.2947 27.2041 18.3435 19.2422 12.2018 30.7406 10.7219
TS (p/s) 922,927 896,724 641,152 951,452 873,806 1,418,156 574,193 1,621,441
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In Table 7, the results of two-factor ANOVA without a 
replication test based on the value of Rproposed are presented. 
The test confirms that the value of Rproposed is related to both 
the algorithms and test images.

8  Conclusion

This study proposes a novel fully thinning algorithm that 
combines the merits of ZS-series algorithms and OPTA-
series algorithms. The property of topology preserva-
tion is proven in Sect. 5. Then, the proposed algorithm is 

implemented and compared against four ZS-series algo-
rithms and three OPTA-series algorithms on numerous 
images with different patterns. Three tests are conducted 
to evaluate the performance of the proposed algorithm in 
terms of insensitivity to boundary noise, thinning rate and 
execution speed. The noise test confirms that the proposed 
algorithm is as insensitive to boundary noise as are the ZS-
series algorithms. In addition, the results of the simple and 
complex pattern tests confirm that the proposed algorithm 
achieves good results with high speed and produces a clean 
skeleton with single-thickness pixels. Consequently, the 

Table 4  Statistical description of the mt on the dataset

mt

ZS Tarabek RIEPTA MZS OPTA OPTA4 FCTA Proposed

Mean 0.77600 0.98825 0.99504 0.98903 0.93951 0.98117 0.99308 0.99480
Standard Error 0.00396 0.00048 0.00023 0.00043 0.00224 0.00077 0.00045 0.00022
Standard Deviation 0.11714 0.01415 0.00703 0.01264 0.06611 0.02263 0.01327 0.00660
Sample Variance 0.01372 0.00020 0.00005 0.00016 0.00436 0.00051 0.00018 0.00004
Confidence Interval (95%) 0.00779 0.00094 0.00046 0.00084 0.00439 0.00150 0.00088 0.00044
Sample Size 871 871 871 871 871 871 871 871

Table 5  Two-factor ANOVA 
test without replication for mt 
( � = 0.05)

Source of Variation SS df MS F P-value F crit

Between Algorithms 34.6935 7 4.9562 2487.654 0 2.0109
Between Images 4.5554 870 0.0052 2.6186 3.6E-99 1.0863
Error 12.1773 6090 0.002
Total 51.4263 6967

Table 6  Statistical description 
of ratio R on the dataset

The ratio Rproposed of the time of the proposed algorithm and of each other 
algorithm

ZS Tarabek RIEPTA MZS OPTA OPTA4 FCTA 

Mean 0.74414 0.71289 0.53330 0.78660 0.62873 0.83660 0.58572
Standard Error 0.00245 0.00172 0.00333 0.00249 0.00178 0.00249 0.00125
Standard Deviation 0.07249 0.05104 0.09837 0.07369 0.05267 0.07369 0.03717
Sample Variance 0.00525 0.00260 0.00967 0.00543 0.00277 0.00543 0.00138
Confidence Interval (95%) 0.00482 0.00339 0.00654 0.00490 0.00350 0.00490 0.00247
Sample Size 871 871 871 871 871 871 871

Table 7  Two-factor ANOVA 
test without replication of ratio 
Rproposed ( � = 0.05)

Source of Variation SS df MS F P-value F crit

Between Algorithms 63.9840 6 10.6640 3688.3831 0 2.1003
Between Images 4.5554 870 0.01520 5.2603 0 1.0873
Error 15.0922 5220 0.0028
Total 92.3082 6096
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proposed algorithm is indeed an effective and robust paral-
lel algorithm that can be applied in different fields.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10044- 021- 01039-y.
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