
IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

  

         International Journal of Advanced Research in Computer and Communication Engineering 
 

Vol. 8, Issue 9, September 2019 
 

Copyright to IJARCCE                                                        DOI  10.17148/IJARCCE.2019.8901                                                              1 

New Fast Modified Non-Maximum Suppression 

Algorithm to Find Local Extrema  

in Grayscale Images 
 

A. T. Nguyen
1
, V. Yu. Tsviatkou

2
 

PG Student, Dept. of Info-Communication Technologies, BSUIR, Minsk, Belarus1 

Associate Professor, Dept. of Info-Communication Technologies, BSUIR, Minsk, Belarus2 

 

Abstract: The aim of the work is to develop an algorithm for extracting local extrema of images with low 

computational complexity and high accuracy. The known algorithms of the search for local extrema based on non-

maximum (or non-minimum) suppression have low computational complexity, but only strict maxima or strict minima 

are detected without errors. The morphological algorithms give accurate results, in which the extreme areas are formed 

by strict and non-strict extrema. However, it has a high computational complexity, separate process of the search for 

maxima and minima (iterative processing). In this paper, a new modified non-maximum suppression algorithm to find 

all local extrema on grayscale images is proposed. The essence of the algorithm is to search for single-pixel local 

extrema and regions of uniform brightness, comparing the values of their boundary pixels with the values of the 

corresponding pixels of adjacent regions by following: the region is a local maximum (minimum) if the values of all its 
boundary pixels are larger (or smaller) to the values of all adjacent pixels. The proposed algorithm allows to detect all 

single-pixel local extrema and extreme areas in images. Besides, the proposed algorithm in comparison with the 

morphological algorithm requires low computational complexity and reduces the processing time and the use of RAM. 
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I. INTRODUCTION 

 

Non-Maximum Suppression (NMS) is the task of finding all local maxima in an image. The term ‘non-maximum 

suppression’ first appeared in an edge detection context as a method to reduce thick edge responses to thin lines [1]. 

This type of directional NMS operates one dimensionally (1-D) perpendicular to the edge. Kitchen and Rosenfeld [2] 
extended the concept to isotropic NMS to locate two-dimensional (2-D) feature points from an image. The feature 

points are selected as local maxima of a ‘cornerness’ image over some neighborhood. This NMS approach to corner 

detection was subsequently adopted by many interest point detectors [3–5]. 
 

Image processing often requires the determination of initial elements, which can be local 2-D extrema (local maxima and 

local minima). To search for local extrema, some block algorithms [6–11] and morphological algorithms [12] are used.  

In block algorithms, the search for extrema is computed within overlapping blocks, usually 3 × 3 or (2𝑛 + 1) × (2𝑛 +
1) pixels in size. Such algorithms have low computational complexity, but they extract local extrema by iterative 
processing (local strict maxima and local strict minima are extracted separately), skip non-strict extrema or extreme 

regions (for a homogeneous region consisting of several adjacent pixels with the same values, none of the pixels in this 

region is detected as a local extremum) (Fig. 1). 

 

 
SE - strict extremum; NE – non-strict extremum 

Fig. 1 Types of local extrema in one-dimensional representation 
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The morphological algorithm is used for the extraction of local maxima and minima in an image, respectively, by image 

reconstruction based on dilatation and erosion operations. It gives accurate results compared to block algorithms, 

highlighting both strict extrema and extreme areas (multi-pixel extrema). However, the morphological algorithm has 

high computational complexity, which is associated with separate processing of maxima and minima, as well as iterative 

processing of the neighborhoods of all pixels. 

 

In this paper, the aim of the work is to develop an algorithm for extracting local extrema in grayscale images with low 

computational complexity, high accuracy and requires less than RAM. 
 

II. PREVIOUS SOLUTIONS 

 

A straightforward approach to NMS over a rectangular neighborhood is described in Fig. 2a. The input image pixels are 

visited in a raster scan order (from left to right, then from top to bottom). Each visited pixel is compared to other pixels 

in its neighborhood also in a raster scan order. The central pixel is a non-maximum if a larger or equal neighbor is 

found. The algorithm then skips to the next pixel in the scan line. The straightforward method is simple to implement 

but it can take a long time to process an image. On average, however, the straightforward method requires 𝑂(𝑛) 

comparisons per pixel. 

 
It turns out that the complexity of a raster scan algorithm can be significantly reduced by visiting the neighbouring 

pixels in a different order. Forstner and Gulch [9] presented such an algorithm with a local spiral order as shown in 

Fig. 2b. By comparing with closer neighbours first, the central pixel is guaranteed to be a 3 × 3-neighborhood local 

maximum before it is tested against a larger neighbourhood. Because the number of 3 × 3 local maxima in an image is 

usually small (≤ 25% of the total number of pixels), the spiral order algorithm quickly finds any non-maximum and 

skips to the next pixel. The number of (2𝑛 + 1) × (2𝑛 + 1) local maxima also decreases rapidly as the neighborhood 

size increases. As a result, the computational complexity of this algorithm is roughly constant (≤ 5 comparisons per 

pixel to detect a 3 × 3 non-maximum) irrespective of the neighbourhood size. 

 

   
(a) Raster scan order [9] (b) Spiral order [10] (c) Block partitioning [9] 

 

Fig. 2 Previous solutions for 2-D non-maximum suppression (5x5 neighborhood) 

 

Recently, Neubeck and Van Gool [9] presented an efficient NMS algorithm that requires 2.39 comparisons per pixel on 

average & 4 comparisons per pixel in the worst-case. They observed that the maximum pixel of a (2𝑛 + 1) × (2𝑛 + 1) 

neighborhood is also the maximum of any (𝑛 + 1) × (𝑛 + 1) window that encloses the pixel. The input image is 

partitioned into non-overlapping blocks of size (𝑛 + 1) × (𝑛 + 1), and the local maximum of each block is detected 

(Fig. 2c illustrates this for 𝑛 = 2). The block maximum is then tested against its (2𝑛 + 1) × (2𝑛 + 1) neighborhood 

minus the enclosing (𝑛 + 1) × (𝑛 + 1)  block. Using only one comparison per pixel, the block partitioning step 

reduces the number of local maximum candidates by a factor of (𝑛 + 1)𝟐. As a result, the Neubeck method is quite 

efficient for large neighbourhood sizes. 

 

In paper [11], the algorithms in [9] and [10] are extended to reduce the number of comparisons to fewer than two 

comparisons per pixel. The algorithm first searches for 1-D local maxima along the scan line. Each scan-line maximum 

is then compared against its neighbors in adjacent rows. A rolling buffer of two binary masks is kept for a current and a 

next scan line. As a new central pixel is processed, its future neighbors are masked out if they are smaller than the 

central pixel. Masked pixels will be skipped when it is their turns for processing. This 1-D non maximum suppression 
algorithm therefore requires one comparison per pixel (Fig. 3). 

 

  
(a) 1D non-maximum suppression (b) 3x3 scan order 

Fig. 3 3-neighborhood non-maximum suppression and 3 × 3-neighborhood scan order 
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The scan-line algorithm for 3 × 3–neighborhoods before can be extended to handle (2𝑛 + 1) × (2𝑛 + 1) – 

neighborhoods for 𝑛 > 1. First, (2𝑛 + 1)– neighborhood maxima on the current scan-line are located. These 1-D 

maxima serve as candidates for the 2-D maxima. Each candidate is then compared against its (2𝑛 + 1) × (2𝑛 + 1)–

neighborhood in a spiral order similar to that of Forstner’s method [10]. Note that the neighbors on the same scan-line 

have already been compared and can therefore be skipped. This results in a maximum of (2𝑛) × (2𝑛 + 1) neighbors to 
be compared per candidate. In practice, the average number of comparisons per candidate is much smaller thanks to the 

spiral traverse order (Fig. 4c). 

 

 

 

 

  

(a) 1D peak and trough detection (b) 1D non-max suppression (c) spiral traverse 

Fig. 4 Scan-line algorithm for (2𝑛 + 1) × (2𝑛 + 1) non-maximum suppression (𝑛 = 3) 

 

From the above algorithms, we can describe the expressions to search for local maximum and local minimum by 

following: 

𝑒𝑀𝐴𝑋(𝑦, 𝑥) {
1, ∀𝑦′∀𝑥′(𝑓(𝑦, 𝑥) > 𝑓(𝑦 + 𝑦′, 𝑥 + 𝑥′),

0, ∀𝑦′∀𝑥′(𝑓(𝑦, 𝑥) ≤ 𝑓(𝑦 + 𝑦′, 𝑥 + 𝑥′).
     (1) 

 

𝑒𝑀𝐼𝑁(𝑦, 𝑥) {
−1, ∀𝑦′∀𝑥′(𝑓(𝑦, 𝑥) < 𝑓(𝑦 + 𝑦′, 𝑥 + 𝑥′),

0, ∀𝑦′∀𝑥′(𝑓(𝑦, 𝑥) ≥ 𝑓(𝑦 + 𝑦′, 𝑥 + 𝑥′).
    (2) 

 

where 𝑦 = 0, 𝑌 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥 = 0, 𝑋 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (𝑦′ ∈ {−1, 0, 1}) ∧ (𝑥′ ∈ {−1, 0, 1})\((𝑦′ = 0) ∧ (𝑥′ = 0)). As a result of 

combining the matrices 𝐸𝑀𝐴𝑋 and 𝐸𝑀𝐼𝑁, a matrix of local extrema E is obtained, the values of the elements of which are 

calculated using the expression 

𝑒(𝑦, 𝑥) =  𝑒𝑀𝐴𝑋(𝑦, 𝑥) +  𝑒𝑀𝐼𝑁(𝑦, 𝑥)      (3) 

 

Regional extrema are detected better by morphological reconstruction by dilation and erosion [11, 12], in which a 

regional minimum M of an image f at elevation t is a connected component of pixels with the value t whose external 

boundary pixels have a value strictly greater than t. M is a regional minimum at level t ⟺ M is connected and 

 

{
∀𝑝 ∈ 𝑀, 𝑓(𝑝) = 𝑡,

  ∀𝑞 ∈ 𝛿(1)(𝑀)\𝑀, 𝑓(𝑞) > 𝑡.
      (4) 

 

Similarly, a regional maximum M of an image f at elevation t is a connected component of pixels with the value t whose 

external boundary pixels have a value strictly less than t. M is a regional maximum at level t ⟺ M is connected and 

  

{
∀𝑝 ∈ 𝑀, 𝑓(𝑝) = 𝑡,

  ∀𝑞 ∈ 𝛿(1)(𝑀)\𝑀, 𝑓(𝑞) < 𝑡.
      (5) 

 

The regional extrema of an image are defined as the union of its regional minima and maxima. According to Eq. 4, the 

set of all maxima of an image f at level t corresponds to the connected components of the cross-section of f at level t 

that are not connected to any component of the cross-section of f at level t+1. They are therefore not reconstructed by 

the morphological reconstruction by dilation 𝐶𝑆𝑡(𝑓) of from 𝐶𝑆𝑡+1(𝑓). Denoting by the regional maxima of an image 

at level t, we can write: 

𝑅𝑀𝐴𝑋𝑡(𝑓) = 𝑅𝑀𝐴𝑋(𝑓) ∩ 𝑇𝑡(𝑓) = 𝐶𝑆𝑡(𝑓)\𝑅𝐶𝑆𝑡(𝑓)
𝛿 [𝐶𝑆𝑡+1(𝑓)].   (6) 

  

The set of all maxima is defined by considering the union of the maxima obtained at each level t: 
 

𝑅𝑀𝐴𝑋𝑡(𝑓) =∪𝑡 {𝐶𝑆𝑡(𝑓)\𝑅𝐶𝑆𝑡(𝑓)
𝛿 [𝐶𝑆𝑡+1(𝑓)]}.     (7) 
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Since 𝐶𝑆𝑡+1(𝑓) = 𝐶𝑆𝑡(𝑓 − 1)
 
and 𝑅𝑀𝐴𝑋𝑡(𝑓) ∩ 𝑅𝑀𝐴𝑋𝑡1(𝑓) = ∅

 
for 𝑡 ≠ 𝑡1

 
all, the set difference in Eq. 7 can be 

replaces with an algebraic  difference and the union by a summation. The summation is then distributed and the 

threshold superposition principle gives: 

𝑅𝑀𝐴𝑋(𝑓) = 𝑓 − 𝑅𝑓
𝛿(𝑓 − 1)      (8) 

      

If the image data type does not support negative values, the following equivalent definition must be considered: 

 

𝑅𝑀𝐴𝑋(𝑓) = 𝑓 + 1 − 𝑅𝑓
𝛿(𝑓)      (9) 

   

Similarly, the regional minima of an image f at level t are denoted by 𝑅𝑀𝐼𝑁𝑡(𝑓): 𝑅𝑀𝐼𝑁𝑡(𝑓) = 𝑅𝑀𝐼𝑁(𝑓) ∩ 𝑇𝑡 (𝑓) =
𝑅𝐶𝑆𝑡+1(𝑓)

𝜀 [𝐶𝑆𝑡(𝑓)\𝐶𝑆𝑡+1(𝑓)]. The set of all regional minima is denoted by RMIN and defined by threshold 

superposition:   

𝑅𝑀𝐼𝑁(𝑓) = 𝑅𝑓
𝜀(𝑓 + 1) − 𝑓      (10) 

 

From the expressions 1 and 2 the main disadvantages of block algorithms for isolating local extrema follow: 

1. Redundancy of processing. The independent formation of matrices by expression 1 also leads to redundancy of 

processing, since the matrix pixels are re-processed when the matrix is formed to find the local minimum. 
2. Skipping non-strict extrema. From the expression 1 it follows that if the matrix has a local maximum homogeneous 

region consisting of several adjacent pixels with the same values (non-strict maxima), not one of the pixels in this 

region is detected as a local maximum. The same is true for local minima by expression 2. The number and area of such 

regions grow during quantization, filtering, and restoration of images after lossy compression. In such cases, skipping 

non-strict extremes leads to incomplete image segmentation, errors in detection, localization, and parameterization of 

objects. 

3. The need for additional processing of the resulting matrix to assign label numbers to local extrema. 

 

From the expressions 4 to 10, the main disadvantages of morphological algorithms for isolating local extrema follow, 

leading to high computational complexity: 

1. Separate processing of local maxima and local minima. 
2. Iterative processing of neighbourhoods of all image pixels. 

3. The need for additional segmentation for assigning label numbers to extreme regions. 

   

III.  NEW FAST MODIFIED NON-MAXIMUM SUPPRESSION ALGORITHM 

 

To eliminate the above disadvantages a new fast modified non-maximum suppression (MNMS – Modified Non-

Maximum Suppression) and its mathematical model to extract all local extrema in grayscale images with low 

computational complexity and high accuracy are proposed (expressions 11, 12, Fig. 6). The essence of the algorithm is 

to search for single-pixel local extrema and areas of uniform brightness, comparing the values of their boundary pixels 

with the values of the corresponding pixels of adjacent areas by following: the region is a local maximum (minimum) if 

the values of all its boundary pixels are greater (less) or equal to the values of all adjacent pixels. Along with single-

pixel extrema, the algorithm takes into account homogeneous regions (of two or more pixels), which are local maxima 
or minima with respect to adjacent regions due to image segmentation and analysis of brightness changes at the 

boundaries of the regions.  

 

The values of the elements 𝑒(𝑦, 𝑥) of the matrix E  of local extrema indicate that the corresponding pixels of the image 

belong to the 𝑛𝑆 − 𝑡ℎ maximum (𝑒(𝑦, 𝑥) = 𝑛𝑆), minimum (𝑒(𝑦, 𝑥) = −𝑛𝑆), or non-extremum (𝑒(𝑦, 𝑥) = 0) of region 

 SnR . The proposed algorithm allows high accuracy in comparison with block algorithms [6-11] and less 

computational complexity in comparison with morphological search algorithm [12] by: combined search for maxima 

and minima by assigning elements 𝑒(𝑦, 𝑥) both positive and negative values; taking into account non-strict extrema by 

estimating the neighborhood of a pixel 𝑓(𝑦, 𝑥) using non-strict inequalities; the elimination of search errors of local 

extreme regions due to the assessment of the neighborhoods of all pixels of each homogeneous region 𝑅(𝑛𝑆); the 

absence of the need for segmentation of the matrix E of local extrema due to the assignment of numbers to single-pixel 

extrema and extreme regions; a single processing of the neighborhoods of all pixels due to the cultivation of 

homogeneous areas 𝑅(𝑛𝑆). 

 

∀𝑦∀𝑥∃𝑛𝑆(𝑓(𝑦, 𝑥) ∈ 𝑅(𝑛𝑆))      (11) 
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(12) 

  

where 𝑦 = 0, 𝑌 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥 = 0, 𝑋 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (∆𝑦1 ∈ {−1, 0, 1}) ∧ (∆𝑥1 ∈ {−1, 0, 1})\((∆𝑦1 = 0) ∧ (∆𝑥1 = 0)), (∆𝑦2 ∈
{−1, 0, 1}) ∧ (∆𝑥2 ∈ {−1, 0, 1})\((∆𝑦2 = 0) ∧ (∆𝑥2 = 0)), 𝑛𝑆 ∈ [0, 𝑁𝑆] – the number of homogeneous brightness 

extreme region 𝑅(𝑛𝑆), 𝑁𝑆 – the number of extreme regions. The block diagram of the proposed algorithm is shown in 

Fig. 6. 
 

 
Fig. 6 Block diagram of the proposed algorithm 

 

As shown in Fig. 6, the algorithm begins with an initialization block (block 1). Then, in the loop, the next non-

segmented and unblocked pixel is searched (block 2). If an unblocked probable maximum is found (block 3), then it is 

block-checked for a strict and non-strict maximum (blocks 4–8). If the current pixel is not a strict or non-strict 

maximum (block 4), then the corresponding adjacent probable minimum is blocked (if the current pixel is less than the 
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adjacent one, then the adjacent pixel cannot be a minimum) (block 8) and the processing proceeds to the unblocked 

probable minimum (block 13). If the current pixel is a strict or non-strict maximum (block 4), then all adjacent probable 

maxima are blocked (block 5) and the current pixel is checked for a strict maximum (block 6). 

If the condition is met (block 6), then the current pixel is registered as a single-pixel local maximum (block 7) and the 

processing of the next pixel is completed (block 14). If the condition is not met, then the segmentation of the probable 

local maximum region is carried out (blocks 9–12). To do this, a region of uniform brightness in brightness is grown as 

a result of the gradual addition of neighboring pixels with equal values to the current pixel (block 9). All pixels adjacent 

to the boundary pixels of the formed region, which are non-strict maxima, are blocked as probable maxima (block 10). 
If at least one boundary pixel of the region is not a non-strict maximum (block 11), then the entire region is not a local 

maximum. In this case, the transition to processing the next pixel is performed (block 14). If all the boundary pixels of 

the region are non-strict maxima (block 11), then the selected homogeneous region is registered as a local maximum 

(block 12) and the process proceeds to the processing of the next pixel (block 14). Unblocked probable minima are 

processed similarly (block 15). If all the pixels are not processed (block 14), then the transition to the search for the 

next non-segmented and unblocked pixel (block 2) is performed. If all the pixels are processed (block 14), then the 

resulting matrix of local extrema is formed (block 16). 

 

IV.  RESULTS 

 

For a visual assessment of the accuracy of the algorithms, Table I shows eight matrices with a different number of local 
extrema, the brightness distribution, and the number of extreme regions for each matrix. From table 1 it follows that the 

block algorithm Scanline3x3 (SL) [11] does not detect local extrema formed by several identical elements (rows 2, 5, 7, 

8 of Table II). The proposed MNMS and morphological algorithm (M) extract all local extrema without errors 

consisting of one or more elements. 

 

Table I   Types of Extrema on Test Matrices 

Type 1 Type 2 

 

 (2 extrema) 

 

 

 

(2 extrema) 

 

Type 3 Type 4 

 

 

 (6 extrema) 

 

 

(2 extrema) 

 

Type 5 Type 6 

 

 

(6 extrema) 

 

 

 
(4 extrema) 

 

Type 7 Type 8 

 

(2 extrema) 

 

 
(4 extrema) 
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Table III   Result of finding local extrema on test matrices in matlab 

Segmented matrices of local extrema 

Ty

pe 
Scanline3x3 (SL) Morphological algorithm (M) Proposed algorithm (MNMS) 

1 

  
 

2 

   

3 

   

4 

   

5 

   

6 

   

7 

   

8 
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The proposed MNMS algorithm is compared with the well-known block algorithm Scanline3x3 [11] and 

morphological algorithm [12] of searching for local extrema in terms of the number of extrema, processing speed, and 

RAM costs. The results were obtained with averaging over images divided into 15 types depending on the shape of the 

histograms of their brightness and brightness derivatives (Table III, IV, Fig.7, 8). 

 

Table IIIII   Grayscale Images of Size 512x512 for Testing 

Types of brightness 

histogram 
1 2 3 

1 

 

   

2 

 
   

3 

 

   

4 

 
   

5 

 

   
 

In Table IV it was experimentally established that the MNMS and morphological algorithms extract 1.4 times more the 

number of local extrema compared to the Scanline3x3 algorithm by taking into account non-strict extrema. The 

selection of extreme regions in addition to strict extrema leads to an increase in the computational complexity of the 

MNMS algorithm in comparison with the Scanline3x3 algorithm. When using computing platforms Intel Core i3 
3.1GHz, 6GB of RAM, Windows7, Matlab2012 (IWM platform), Intel Core i3 3.1GHz, 6GB of RAM, Windows7, 

Open CV, C ++ (IWC platform), Raspberry Pi 3, ARM- A53, Linux, Open CV, C ++ (RLC platform) the MNMS 

algorithm in comparison with Scanline3x3 algorithm requires 1.6, 1.7, 1.9 times more processing time and 5.8 times 

more use of RAM, respectively. However, implementation of the MNMS algorithm on IWM and IWC platforms, as 

compared with the implementation of the morphological algorithm, requires 4.1, 3.1 times less processing time and 2.1 

times less use of RAM, respectively. 
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Table IVV   Result of finding local Extrema in Grayscale images (Table iii) 

Imag

e 

Number of 

extreme 

pixels 

Number of 

local 

extrema 

Execution time, seconds 

Number 

of 

Operatio

ns per 

Pixel 

Number of 

missed 

extrema 
IWM platform IWC platform 

RLC 

platform 

SL 

MNM

S, 

M 

SL 

MN

MS, 

M 

SL 
MNM

S 
M SL 

MNM

S 
M SL 

MNM

S 
SL 

MN

MS 
SL 

MN

MS, 

M 

1-1 16046 83053 16046 23304 0.087 0.161 1.987 0.028 0.052 0.147 0.089 0.241 16 47 7258 0 

1-2 13091 24103 13091 16558 0.086 0.105 0.324 0.026 0.034 0.128 0.087 0.122 16 21 3467 0 

1-3 14006 35713 14006 18575 0.085 0.109 0.403 0.027 0.037 0.129 0.087 0.135 16 23 4569 0 

2-1 18344 44548 18344 27351 0.088 0.176 0.524 0.028 0.066 0.135 0.091 0.265 17 50 9007 0 

2-2 9925 25433 9925 15127 0.087 0.147 0.534 0.026 0.053 0.128 0.086 0.198 16 38 5202 0 

2-3 9260 20732 9260 13410 0.084 0.123 0.475 0.027 0.039 0.125 0.085 0.144 15 26 4150 0 

3-1 16025 41380 16025 24137 0.088 0.183 0.782 0.028 0.067 0.132 0.089 0.263 17 50 8112 0 

3-2 5612 24759 5612 10441 0.082 0.155 0.660 0.024 0.056 0.125 0.083 0.213 15 40 8429 0 

3-3 8761 22494 8761 13486 0.082 0.124 0.390 0.026 0.042 0.127 0.085 0.152 15 28 4725 0 

4-1 14461 36194 14461 20842 0.089 0.192 0.622 0.028 0.070 0.135 0.088 0.268 17 52 6381 0 

4-2 11668 26065 11668 17059 0.084 0.122 0.432 0.026 0.038 0.130 0.086 0.137 16 25 5391 0 

4-3 13102 25554 13102 17703 0.086 0.121 0.368 0.027 0.037 0.129 0.087 0.133 16 24 4601 0 

5-1 28251 32573 28251 30547 0.090 0.099 0.242 0.029 0.031 0.134 0.093 0.108 17 18 2296 0 

5-2 23473 27308 23473 25510 0.091 0.098 0.254 0.028 0.030 0.126 0.091 0.105 17 18 2037 0 

5-3 13292 20049 13292 16269 0.087 0.104 0.275 0.027 0.033 0.122 0.087 0.116 16 20 2977 0 

 

V. EXTENSIONS AND APPLICATIONS 

 

The MNMS algorithm can be used to find distinctive feature points in an image. To improve the repeatability of a 

detected corner across multiple images, the corner is often selected as a local extremum whose corners is significantly 

higher (or lower) than the close-by second highest (or lowest) peak [4, 13]. 

 

 
Fig. 7 Program interfaces of the proposed algorithm in Matlab 

 

For some applications such as multi-view image matching, an evenly distributed set of interest points for matching is 

desirable. An oversupplied set of MNMS point features can be given to an adaptive non-extreme suppression process 

[14], which reduces cluttered corners to improve their spatial distribution. 
 

Moreover, the MNMS algorithm can be used to video denoising by detecting highlight point in a video frame, aligning 

these points to estimate global shift, and average aligned video frames are used to improve Signal-to-Noise Ratio. In 

general, the MNMS algorithm enables some bonus applications:  image segmentation, image recognition, image 

compression. 



IJARCCE 
 ISSN (Online) 2278-1021 

   ISSN (Print) 2319-5940 

  

         International Journal of Advanced Research in Computer and Communication Engineering 
 

Vol. 8, Issue 9, September 2019 
 

Copyright to IJARCCE                                                        DOI  10.17148/IJARCCE.2019.8901                                                              10 

 
(a)  RGB image of local extrema in image 1-1 

 
(b) RGB image of local extrema in image 5-3 

Colour pixels – extrema;                                                         White pixels – background 

Fig. 8 Example of getting RGB segmented images of local extrema 

 

VI. CONCLUSION 
 

A mathematical model and an algorithm for search of local extrema in grayscale images based on modified non-

maximum suppression and analysis of the brightness of adjacent pixels and regions are proposed. The proposed 

algorithm MNMS, as well as the morphological algorithm, allows to detect all single-pixel local extrema and extreme 

areas consisting of pixels with the same values. Moreover, the proposed algorithm, in comparison with the 

morphological algorithm, requires less than 3-4 times depending on the computing platform with averaging over image 

types in time and 2 times in use of RAM.   
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