
ОЦЕНКА ЭФФЕКТИВНОСТИ КАНАЛОВ РАСПРЕДЕЛИТЕЛЬНОЙ СИСТЕМЫ СТАНДАРТА DVB-C2

Э.Б. ЛИПКОВИЧ, А.А. ПАВЛОВСКИЙ, А.А. СЕРЧЕНЯ

Рассмотрены принципы построения и функционирования передающего тракта цифровой распределительной сети стандарта DVB-C2. Представлены расчетные соотношения, по которым определены значения информационной скорости и спектральной эффективности каналов DVB-C2 с различными видами и порядком модуляции. Приведены математические модели расчета помехоустойчивости стандарта DVB-C, использующий многопозиционные виды модуляции и блочное кодирование по алгоритму Рида — Соломона (РС). На основании расчетных моделей выполнен сравнительный анализ эффективности каналов DVB-C2 и DVB-C и отмечены существенные преимущества систем второго поколения. Дана оценка показателей эффективности реальных каналов DVB-C2 по сравнению с теоретически достигаемыми по Шеннону.

Структурная схема передающего тракта системы DVB-C2

Блок предварительной обработки PLP-потока

ИС - интерфейс сопряжения; СВП - синхронизатор входного потока; УУНП - устройство удаления нулевых пакетов; кодер СRС-8 для обнаружения на приеме ошибок в пакете; ФПД - формирователь полей данных; ФЗБП - формирователь заголовка базовой полосы.

	← 7,61 МГц- Преамбула	- 			,61 МГц—— реамбула		
448 ОFDM- символов	Полоса блока 1	Полоса блока 2	Полоса блока 3		Полоса блока n – 1	Полоса блока п	
	Общая полоса частот						

Структура кадра системы DVB-C2

Значения информационной скорости передачи данных, бит/с

R_L	QAM-16	QAM-64	QAM-256	QAM-1024	QAM-4096
2/3	20,22	30,32	40,44	50,55	60,66
3/4	22,74	34,11	45,48	56,85	68,22
4/5	23,69	35,53	47,38	59,22	71,07
5/6	24,7	37,04	49,39	61,74	74,09
9/10	26,69	40,03	53,38	80,72	80,07

Значения параметров γ_c , γ_0 и ρ_c для стандарта DVB-C2

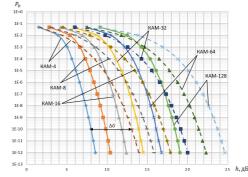
R_{κ}	QAM-16		QAM-64		QAM-256		QAM-1024		QAM-4096	
	γ_c	ρ_c								
2/3	2,53	8,9	3,79	13,5	5,05	17,8	6,32	_	7,58	_
3/4	2,84	10,0	4,26	15,1	5,68	20,0	7,11	24,8	8,53	_
4/5	2,96	10,7	4,44	16,1	5,92	21,3	7,40	_	8,88	_
5/6	3,09	11,4	4,63	16,8	6,18	22,0	7,72	27,2	9,26	32,4
9/10	3,34	12,8	5,01	18,5	6,68	24,0	8,34	29,5	10,01	35,0

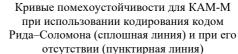
Результаты расчетов значений ρ_{κ} , h_{κ} и γ_c для каналов стандарта DVB-C, дБ

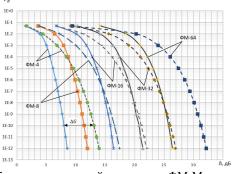
Парамет	Вид модуляции						
p	QAM-16	QAM-32	QAM-64	QAM-128	QAM-256		
рк, дБ	17,76	21,02	23,85	26,94	29,78		
h _{к, дБ}	12,2	14,39	16,43	18,85	21,11		
γ _с , бит/с·Гц	3,205	4,0	4,808	5,61	6,41		

Результаты сравнения ОНШ стандартов DVB-C2 и DVB-C

R_{κ}	Вид модуляции						
K _K	QAM-16	QAM-64	QAM-256				
5/6	6,3	7,05	7,78				
9/10	4,96	5,35	5,78				


АНАЛИТИЧЕСКАЯ МОДЕЛЬ РАСЧЕТА ПОМЕХОУСТОЙЧИВОСТИ СИСТЕМ С МНОГОПОЗИЦИОННЫМИ ВИДАМИ МОДУЛЯЦИИ И КОДИРОВАНИЕМ ПО АЛГОРИТМУ РИДА-СОЛОМОНА


ЛИПКОВИЧ Э.Б., КОВШИК В.А., СЕРЧЕНЯ А.А.


является разработка аналитических моделей расчета помехоустойчивости и эффективности цифровых систем радиосвязи, использующих многопозиционные виды модуляции (КАМ-М, ФМ-М, ЧМ-М, АМ-М) и блочное кодирование по алгоритму Рида-Соломона (РС) с жестким декодированием. В отличие от известных подходов к определению помехоустойчивости систем предлагаются расчетные модели, не требующие знания коэффициентов спектра кода, привлечения процедур компьютерного моделирования и графических построений кривых помехоустойчивости для различных видов модуляции и параметров кодирования. Приведенные в статье расчетные соотношения включают только основные показатели кода (свободное расстояние, длину кодового слова, относительную скорость кода) и вида модуляции (порядок модуляции, квадрат коэффициента помехоустойчивости). Они позволяют напрямую определять теоретически требуемые значения отношения сигнал/шум (ОСШ) на входе приемных устройств по заданной вероятности ошибки на выходе декодера РС, а также проводить исследования энергетического выигрыша от кодирования (ЭВК), информационной и спектральной эффективностей систем. Базируясь на предложенных соотношениях, выполнены расчеты основных характеристик каналов радиосвязи для различных параметров кодов РС, достоверности приема, видов и порядков модуляции. Сравнение приведенных в статье результатов расчета помехоустойчивости и эффективности систем с известными аналогичными характеристиками, полученными в результате компьютерного моделирования, подтверждает правильность представленных аналитических моделей. Погрешность построенных кривых помехоустойчивости не превышает 0,1 дБ в рабочем диапазоне ОСШ. Представленные в статье материалы являются оригинальными и могут быть использованы при проектировании, расчете и разработке наземных и спутниковых

Значения ОСШ и ЭВК для различных параметров кола РС. дБ

эначения ост и этк для различных нараметров кода г с, дв										
Значения		Параметры кода PC (n, k, t)								
		(7,3,2)	(15,9,3)	(31,23,4)	(31,13,9)	(255,243,6)	(255,239,8)	(255,223,16)		
$P_b = 10^{-3}$	<i>h</i> _к , дБ	7,28	6,28	5,75	5,56	5,66	5,12	4,0		
	ΔG, дБ	-0,49	0,51	1,04	1,2	1,13	1,67	2,78		
$P_b = 10^{-6}$	<i>h</i> _к , дБ	9,87	8,42	7,72	7,26	7,50	6,67	4,72		
	ΔG, дБ	0,65	2,09	2,79	3,26	3,02	3,85	5,80		

Кривые помехоустойчивости для ФМ-М при использовании кодирования кодом Рида—Соломона (сплошная линия) и при его отсутствии (пунктирная линия)