PSYCHOACOUSTICALLY MOTIVATED AND BIOINSPIRED METHODS OF DIGITAL SIGNAL PROCESSING

PhD. Vashkevich Maxim

(vashkevich@bsuir.by)

Belarussian state university of informatics and radioelectronics (BSUIR)

Department of computer engineering

DSPA Conference

Introduction (a bit of history)

Thanks to the organizers for the invitation.

Викискпал

Элемент Викиданных

My scientific advisor: Petrovsky Alexander (1953-2019)

1989 г. защитил докторскую диссертацию на тему «Построение микропроцессорных систем обработки виброакустических процессов в реальном времени» (защита проходила в Институте проблем моделирования в энергетике им. Г. Е. Пухова, г. Киев) В 1990 г. избран завелующим кафелрой электронных вычислительных средств БГУИР которой руководил до 2017 года^[5]

Место рожден Дата см

ждения	1 января 1953
	д. Снов, БССР
ИЯ	
ерти	14 марта 2019 (66 лет)

Aim of this talk

To give an idea of the existing **bioinspired** and **psychoacoustically motivated** methods of audio signal analysis, and to show the areas of its application.

Two groups of methods

1) *Bioinspired methods* – aimed to modeling the work of the parts of the auditory system. Methods are based on parametric expressions fitted to the physiological data.

Examples of the **physiological data**:

- characteristics of the excitation of the auditory nerve;
- measured displacement of the basilar membrane;

2) Psychoacoustically motivated methods are based on patterns obtained in the study of auditory perceptions of sounds.

Examples of psychoacoustic patterns:

- critical bands;
- *pitch* and *loudness* of sound.

Auditory filters

The basilar membrane contains ~ 3000 internal hair cells. Each cell is responsible for a specific frequency range.

The mechanical movement of the cochlea basilar membrane is modeled using a **bank of digital filters**. These filters are called *cochlear* or *auditory* filters.

Bioinspired auditory filters: roex-filters

*Roex-filters*¹ (round exponential) are describes the auditory filters in the frequency domain using round exponential functions:

$$|H(f)|^2 = (1-r)(1+pg)e^{-pg} + r, \qquad g = |f - f_c|/2$$

where g – normalized deviation of frequency f from central frequency f_c .

¹ The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold / R. D. Patterson, et al. // The Journal of the Acoustical Society of America. – 1982. – vol. 72, №. 6. – P. 1788–1803.

Bioinspired auditory filters: gammatone-filters

Gammatone filters² – description of the auditory filter in time domain:

$$h(t) = t^{(l-1)}e^{-2\pi b \text{ERB}(f_c)} \cos 2\pi f_c t, \qquad t > 0.$$

where b – bandwidth parameter, l – the order.

² An efficient auditory filterbank based on the gammatonefunction / R. D. Patterson, et al. // Proceeding of the IOC Speech Group on Auditory Modelling at RSRE. – 1987. – vol. 2, №. 7. – P. 1-34.

Bioinspired auditory filters: gammachirp filters

Gammachirp filters³ – refined description of the auditory filter in the time domain:

 $h(t) = t^{(l-1)}e^{-2\pi b \text{ERB}(f_r)} \cos(2\pi f_r t + c \ln t + \phi),$

where f_r – pick frequency, c – additional parameter.

³ Irino, T. A time-domain, level-dependent auditory filter: The gammachirp / T. Irino, R. D. Patterson // The Journal of the Acoustical Society of America. – 1997. – vol. 101, №. 1. – P. 412-419.

t > 0.

=	250~Hz
=	500~Hz
=	$1000\;Hz$
=	2000~Hz

Practical implementation of auditory filters

The *discrete-time impulse responses* of the auditory filters are designed by sampling and windowing the continuous-time infinite-length impulse responses

Main problem: impulse responses are very long.

Example ($f_s = 8000 \text{ Hz}$): \checkmark for f_c =500 Hz impulse response about 240 samples. \checkmark for f_c =80 Hz impulse response about 600 samples.

Digital time-domain model of the human cochlear (1)

J. Kates proposed⁴ to model the propagation of a traveling wave on the cochlear partition using a cascade of second-order IIR digital filters.

 $H_{hp,k}(z)$ – one-pole highpass filter that models the pressure-to-velocity transformation; $F_k(z)$ – is a notch filter by which the total response shows two resonance frequencies, which coincides with biological observations; $H_k(z)$ – is a single section of the traveling wave filter, which provides a gain for frequencies near the resonance frequency of the filter.

⁴ Kates, J. M. A time-domain digital cochlear model // IEEE Transactions on Signal Processing. – 1991. – vol. 39, №. 12. – P. 2573–2592.

Digital time-domain model of the human cochlear (2)

Transfer function of auditory filters of Kate's model:

Psychoacoustically motivated analysis

Drawbacks of **bioinspired methods**:

- Iarge computational burden;
- \checkmark as a rule, resynthesize procedure is not defined;
- \checkmark do not based on fast and effective DSP transforms;

Psychoacoustically motivated method:

- \checkmark are based on the results of psychoacoustic experiments;
- \checkmark are simulate frequency (sometimes temporal) resolution of hearing;
- are based on well-known and effective DSP transforms.

Critical bands

Critical bands define the frequency ranges within which the interaction of sound energies is observed.

The *critical band* is a frequency range ("bark") with a width of 20% of the center frequency. The auditory range is covered by 24 barks.

$$z(f) = 13 \operatorname{arctg}\left(\frac{7,6}{10^4 f}\right) + 3,5 \operatorname{arctg}\left(\left(\frac{f}{7500}\right)^2\right) [\text{Bark}]$$

DFT with subband merging

defined in computational

resolution Of

Auditory filters based on wavelets

computational

 $f_c = \overline{250 \ Hz}$ $f_c = 750 \ Hz$ $f_c = 1500 \ Hz$ $f_c = 3000 \ Hz$ 3000 4000

Filter bank based on allpass transform

Allpass transform allows to obtain *nonuniform* filter bank from *uniform* filter bank⁵.

$$z^{-1} \rightarrow A(z) = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}, \quad A(e^{j\omega}) = e^{j\theta(\omega)}.$$

$$x(n) \rightarrow z^{-1} \rightarrow z^{$$

⁵ Vary, P. Digital filter banks with unequal resolution // Short Communication Digest of European Signal Processing Conference (EUSIPCO), 1980. – pp. 41–42.

Filter bank based on allpass transform

Application of allpass transform to discrete-time system leads to frequency warp- $\theta^{-1}: \Omega \to \omega$. ing:

Filter bank based on allpass transform

Comparison of time-frequency localization

We compared 3 different approaches to auditory filters modeling

- ✓ Gammatone filters
- ✓ Wavelet filters
- ✓ Allpass based DFT filter bank

Heisenberg rectangular⁶

Time localization

$$\sigma_t^{(k)} = \int_0^\infty (t - \tau_k)^2 |h_k(t)|^2$$

Frequency localization

$$\sigma_{\omega}^{(k)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\omega - \omega_k)$$

⁶ Вашкевич, М.И. Сравнение частотно-временных преобразований: Фурье-анализ, вейвлеты и банки фильтров на основе фазового преобразования / М.И. Вашкевич, И. С. Азаров // Цифровая обработка сигналов – 2020. – №2. – С. 13–26.

$|^{2}dt$

$_{k})^{2}\left|H_{k}\left(e^{j\omega}\right)\right|^{2}d\omega$

Comparison: gammatone filters

Auditory filters correspondent to first 12 critical bands.

Comparison: wavelet filters

Comparison: allpass based DFT filter bank

Auditory filters correspondent to first 12 critical bands.

Comparison of time-frequency localization

Voice pathology detection

Application of psychoacoustically motivated analysis:

Voice pathology detection based on critical band modulation spectra analysis⁷.

7 Вашкевич М. И., Азаров И. С. Определение патологии голосового аппарата на основе анализа модуляционного спектра речи в критических полосах / М. И. Вашкевич, И. С. Азаров // Труды СПИИРАН. – 2020. – Т. 19. – №. 2. – С. 249–276.

Modulation spectra: example

Two analysis scheams (feature extraction)

Classification results

Voice base: 30 recordings of patients with larynx pathology + 30 healthy controls.

Conclusion: parameters extracted using filter bank based on allpass transform is more effective.

Conclusion

1) Bioinspired methods of analysis:

- roex-filters;
- gammatone filters;
- gammachirp filters;
- Kates model.

2) Psychoacoustically motivated analysis:

- DFT with subband merging;
- Filter bank based on wavelets;
- Filter bank based on allpass transform;

3) Application: voice pathology detection based on psychoacoustically motivated analysis.

Thank you for attention!

