
High-Accuracy Implementation of Fast DCT
Algorithms Based on Algebraic Integer Encoding

Maxim Vashkevich
Computer Engineering Department

Belarusian State University
of Informatics and Radioelectronics

Minsk, Belarus 220013
Email: vashkevich@bsuir.by

Marek Parfieniuk
Department of Digital Media

and Computer Graphics
Bialystok University of Technology

Bialystok, Poland 15-351
Email: m.parfieniuk@pb.edu.pl

Alexander Petrovsky
Department of Digital Media

and Computer Graphics
Bialystok University of Technology

Bialystok, Poland 15-351
Email: palex@bsuir.by

Abstract— The paper presents a systematic approach to syn-
thesizing and implementing fast algorithms for computing the
DCT of a power-of-two size. The main features of the obtainable
algorithms are regularity of their signal flow graphs and low
arithmetic complexity. Multiplierless implementation of the algo-
rithms is based on the algebraic integer (AI) technique. A general
AI encoding scheme for fast DCT algorithms is presented. The
approach is demonstrated by using it to derive an AI-based low-
error fast implementation of the 16-point DCT.

I. INTRODUCTION

The Discrete Cosine Transform of type 2 (DCT-2) is the
key operation used by the majority of video and image
compression algorithms. The reasons of its popularity are its
property of energy compaction and its asymptotic equivalence
to the Karhunen-Loéve transform for signals produced by the
first-order Gaussian Markov process.

Although the 8-point DCT-2 is the kernel of the H.261,
JPEG, and MPEG-2 standards for image/video compression,
more recent solutions such as the VC-1, AVS and HEVC use
a number of transforms of sizes ranging from 4 to 64. It is
possible that even larger transforms will be considered in the
future since video resolutions keep increasing [1].

Many different fast DCT algorithms that use reduced
numbers of multiplications have been developed in the last
decades [2], [3]. The majority of them have been found
by insightful manipulations of the entries of the transform
matrix using algebraic relationships. Recently, an approach
to derivation of fast DCT algorithms based on the notion
of polynomial algebra has been presented in [4]. Now this
approach is referred to as the algebraic signal processing
theory (ASP) [5].

Multiplication by nontrivial factors is another problem to
be solved in practical implementations of DCT algorithms.
It is an important issue since floating-point multiplication is
rather slow in hardware/software realizations. Many structures
of fast DCT algorithms [6], [7] contain plane rotation blocks,
where all nontrivial multipliers are concentrated. An efficient
approach to fixed-point implementation of plane rotation using
lifting schemes has been suggested in [8]. Another way to
avoid floating-point multiplications in plane rotation is to
employ the CORDIC algorithm [9]. This approach has resulted

in efficient approximations of the 8-point DCT with short
critical paths [10], [11]. The main drawback of the mentioned
approaches is that they use Loeffler’s algorithm, which cannot
be generalized to sizes larger than 16. Another problem is
that the obtained algorithms are characterized by coding gains
lower than the original DCT.

In this paper, we present an ASP-based systematic approach
to synthesizing and implementing fast DCT-2 transforms of
power-of-two sizes. In order to obtain multiplierless high-
accuracy implementations of the fast DCT algorithms, the
algebraic integer (AI) technique proposed in [12] is used.
However, unlike in [12], we derive a general AI encoding
scheme for the proposed fast DCT algorithms. As a practical
example, an AI-based fast implementation of the 16-point
DCT is given, which offers high coding gains.

The paper is organized as follows. The mathematical frame-
work of the ASP is introduced in Section II. Section III
presents a derivation of a recursive fast DCT-2 algorithm of
a power-of-two size. A general AI encoding scheme for the
proposed DCT algorithms and an AI-based implementation of
the 16-point DCT-2 are described in Section IV. Additional
considerations and conclusions are given in Section V.

In our derivations, the following matrices are used:

In =

⎡
⎢⎢⎣
1

. . .

1

⎤
⎥⎥⎦ Jn =

⎡
⎢⎢⎣

1

. .
.

1

⎤
⎥⎥⎦ .

II. ALGEBRAIC DERIVATION OF FAST DCT ALGORITHMS

A. Background: polynomial algebra
In [4], it has been shown that fast DCT algorithms can be

systematically derived using the notion of polynomial algebra.
A polynomial algebra is a vector space over the field F and
can be denoted as

AF = F[x]/p(x). (1)

The elements of the algebra belong to the set of all polyno-
mials in x over F of degrees smaller than deg(p) = n. In
the remainder of the paper, it is assumed that the polynomial
p(x) has pairwise distinct zeros α = (α0, . . . , αn−1). In AF,
additions and multiplications are performed modulo p(x).

The Chinese remainder theorem (CRT) allows for decom-
posing the polynomial algebra (1) into a direct sum of one-
dimensional subalgebras as

F : F[x]/p(x) →
⊕

0≤k<n

Fe[x]/(x− αk), (2)

where Fe is some extension of the field F. The mapping F
can be represented in a matrix form as

F = Pb,α = [p�(αk)]0≤k,�<n, (3)

provided a basis b = (p0, . . . , pn−1) with deg(pi) < n is set
for F[x]/p(x), and the unit basis (x0) = (1) is chosen in each
Fe[x]/(x−αk). Pb,α is referred to as a polynomial transform
for AF with the basis b [5]. A scaled polynomial transform is
obtained for a different basis βk in each of subalgebras in (2):

F = diag(1/β1, . . . , 1/βn−1) · Pb,α. (4)

B. Fast algorithms: brief explanation

From the ASP theory, it is known that the DCT is a poly-
nomial or scaled polynomial transform for the corresponding
polynomial algebra F[x]/p(x) with the basis b. It can be seen
from (2) that F decomposes F[x]/p(x) into one-dimensional
polynomial algebras. A fast algorithm is obtained by applying
this decomposition gradually (in steps) using intermediate
subalgebras.

The most common way to decompose F[x]/p(x) is to
employ the factorization p(x) = q(x) · r(x). If deg(q) = k
and deg(r) = m, then

F[x]/p(x)

→ F[x]/q(x)⊕ F[x]/r(x) (5)

→
⊕

0≤i<k

F[x]/(x− βi)⊕
⊕

0≤j<m

F[x]/(x− γj) (6)

→
⊕

0≤i<n

F[x]/(x− αi) (7)

where βi and γj are the zeros of q(x) and r(x), respectively. If
c and d are the bases of F[x]/q(x) and F[x]/r(x), respectively,
then (5)–(7) can be expressed in a matrix form as follows [5]:

Pb,α = P (Pc,β ⊕ Pd,γ)B, (8)

where A ⊕ B = [A B] denotes the direct sum of matrices.
In the step (6), the CRT is used to decompose F[x]/q(x) and
F[x]/r(x). This step corresponds to the direct summation of
the matrices Pc,β and Pd,γ . Finally, the permutation matrix
P maps the concatenation (β, γ) onto the ordered list of the
zeros αi in (7). Assuming that B in (8) is sparse , this leads
to a fast algorithm.

C. Polynomial algebras related to the DCT-2 and DCT-4

First, we consider the polynomial algebra associated with
the DCT-4n (abbreviation for the n-point DCT-4)

AF = F[x]/2Tn(x), b = (V0, . . . , Vn−1), (9)

where Tn and Vn denote the Chebyshev polynomials of the
first and third kind, respectively, which can be represented
using the following closed-form expressions

Tn(x) = cos(nθ), Vn(x) =
cos(n+ 1

2)θ

cos 1
2 θ

. (10)

assuming that cos θ = x, and αk = cos(k + 1
2)

π
n , 0 ≤ k < n

are zeros of 2Tn(x). In accordance with (3), (9) corresponds
to the polynomial transform

Pα,b = [V�(αk)]0≤k,�<n =

[
cos(k + 1

2)(�+
1
2)

π
n

cos(k + 1
2)

π
2n

]
. (11)

In order to realize the DCT-4n matrix, (11) needs to be left-
multiplied by the diagonal scaling matrix

D
(C4)
n = diag0≤k<n

(
cos(k + 1

2)
π
2n

)
which yields

DCT-4n =
[
cos(k + 1

2)(�+
1
2)

π
n

]
0≤k,�<n

. (12)

The DCT-2n is related to the polynomial algebra

AF = F[x]/(x− 1)Un−1(x), b = (V0, . . . , Vn−1), (13)

where Un denotes the Chebyshev polynomial of the second
kind, which can be written for x = cos θ as

Un(x) =
sin(n+1)θ

sin θ .

As zeros of Un(x) are given by αk = cos (k+1)π
n+1 , 0 ≤ k < n,

the polynomial transform for (13) takes the form

Pα,b = [V�(αk)]0≤k,�<n =

[
cos k(�+ 1

2)
π
n

cos kπ
2n

]
. (14)

In order to realize DCT-2, the matrix in (14) needs to be
left-multiplied by the diagonal scaling matrix

D
(C2)
n = diag0≤k<n

(
cos kπ

2n

)
.

The polynomial transform that corresponds to the discrete
trigonometric transform (DTT) is denoted as DTT. For
instance, DCT-4n stands for the matrix in (11).

In the following, we need the skew DCT-4n(r). This
transform has been introduced in [5] because it appears to be
an important building block for Cooley-Tukey-type algorithms
for computing the DCT. The skew DCT-4n(r) is associated
with the polynomial algebra

AF = F[x]/(2Tn(x)− 2 cos rπ)

where 0 < r < 1, and with the basis b = (V0, . . . , Vn−1).
The conventional DCT-4n is a special case of the skew
DCT-4n(r) for r = 1/2.

III. SYNTHESIS OF FAST ALGORITHMS FOR COMPUTING
THE DCT-2 OF POWER-OF-TWO SIZES

A. Selection of the base field
An important issue is to choose the base field F in (13).

Since the Chebyshev polynomials have integer coefficients,
e.g. V2(x) = 4x2 − 2x − 1, it is natural to define F to be
the field of rational numbers, Q. The field is extended during
factorization of the polynomial U2k−1(x), since in the general
case, the Chebyshev polynomials cannot be factorized over Q.

B. Fast algorithm for DCT-22n
It is well known, see [3], that the DCT-22n can be reduced

to the DCT-2n and DCT-4n. From the point of view of the
ASP theory, this is a consequence of the existence of the
following factorization

U2n−1(x) = Un−1(x) · 2Tn(x),

which allows the algebra Q[x]/(x−1)U2n−1(x) with the basis
b = (V0, . . . V2n−1) to be decomposed as follows

Q[x]/(x− 1)U2n−1(x)

→ Q[x]/(x− 1)Un−1(x)⊕Q[x]/2Tn(x), (15)

According to (5)–(7), this leads to the following fast algo-
rithm [5]

DCT-22n = L2n
n (DCT-2n ⊕DCT-4n)B2n, (16)

where L2n
n is a stride permutation matrix, and B2n is a basis-

change matrix. B2n maps the basis b onto the concatenation
(c, d), where c = d = (V0, . . . Vn−1) are the basis for the
subalgebras in the right-hand side of (15). The first n columns
of B2n are

B2n =

[
In ∗
In ∗

]
,

since the elements V� ∈ b for 0 ≤ � < n are already
contained in c and d. The rest of entries are determined by
the expressions

Vn+� ≡ Vn−�−1 mod (x− 1)Un (17)
Vn+� ≡ −Vn−�−1 mod 2Tn, (18)

which yields

B2n =

[
In Jn

In −Jn

]
.

One can deduce (17)–(18) using the relations: 2Tn = Vn +
Vn−1, (x− 1)Un−1 = Vn − Vn−1 and Vn = 2xVn−1 − Vn−2.
Please also notice that the decomposition (15) does not require
extending the base field Q. Thus, the matrix B2n describes a
basis change that needs no multiplications.

C. Fast algorithm for DCT-42n
If the size of DCT-2 is a power of two, then (16) can be

applied recursively in order to obtain a fast algorithm. Hence,
the problem of deriving a fast DCT-22k algorithm reduces to
deriving a fast DCT-42k−1 algorithm. From the ASP point of
view, the question is how to factorize the polynomial 2Tn in
steps, when n is a power of 2.

We propose to use the following general recursive formula

2T2n(x)− 2 cos rπ =
(
2Tn(x)− 2 cos rπ

2

)
× (

2Tn(x)− 2 cosπ(1− r
2)
)
, (19)

which can be proved using the closed form of T2n, if the
parameter r ∈ (0, 1). The special case of r = 1/2 in (19)
can be used to specify a factorization of 2T2n. Using (19), the

polynomial algebra related to DCT-42n(r) is decomposed as
follows1

Qcos rπ[x]/(2T2n(x)− 2 cos rπ)

→ Qcos rπ
2
[x]/(2Tn(x)− 2 cos rπ

2)

⊕ Qcos rπ
2
[x]/(2Tn(x)− 2 cosπ(1− r

2)). (20)

The decomposition leads to the following fast algorithm

DCT-42n(r) = P · (DCT-4n(r2)

⊕DCT-4n(1− r
2)) ·B(C4)

2n (r),
(21)

where P is a permutation matrix of the form

P =

⎡
⎢⎢⎢⎢⎣

1
I2

I2
. . .

. . .
I2

1

⎤
⎥⎥⎥⎥⎦ ,

and B
(C4)
2n (r) is the basis-change matrix

B
(C4)
2n (r) =

[
Im (2 cos rπ

2 Im − Jm)

Im (−2 cos rπ
2 Im − Jm)

]

=

[
Im Im

Im −Im

]
·
[
Im −Jm

2 cos rπ
2 Im

]
,

(22)

which is determined by

Vn+� ≡ −Vn−�−1+2 cos rπ
2 V� mod 2Tn − 2 cos rπ

2

Vn+� ≡ −Vn−�−1−2 cos rπ
2 V� mod 2Tn − 2 cosπ(1− r

2).

The decomposition (20) requires the base field Qcos rπ to
be extended to Qcos rπ

2
. The new elements of the field appear

in the matrix B
(C4)
2n (r).

Listing 1. Matlab implementation of the developed algorithm.
function [y] = dct4(r, x)
%DCT4 Computation of skew DCT4(r).
m = length(x)/2;
Im = eye(m); Jm = rot90(Im);
a = 2*cos(pi*r/2); Zm = zeros(m,m);
B1 = [Im -Jm; Zm a*Im];
B2 = [Im Im; Im -Im];
x = B2*B1*x;
P = eye(2);
if m˜=1

x1 = dct4(r/2, x(1:m));
x2 = dct4(1-r/2, x(m+1:2*m));
x = [x1; x2];
P = zeros(2*m, 2*m);
P(1,1) = 1; P(2*m,m) = 1;
row = 2; col = m+1; sign = -1;
for i=1:m-1

P(row,col) = 1;
row = row+1; col = col+1;
P(row,col) = 1;
row = row+1; col = col+sign*m;
sign= sign*(-1);

end
end
y = P*x;
end

1Qcos rπ is used here as a short notation for the field extension Q[cos rπ].

The joint use of the factorizations (16) and (21) leads to
a fast recursive DCT-22k algorithm. The key step of the
algorithm is the multiplication by the matrix B

(C4)
2n (r). All

nontrivial multiplications are concentrated in it, which is very
similar to the butterfly operation in the FFT algorithm. As an
illustration, a Matlab implementation of the algorithm (21) is
given in Listing 1.

D. Fast DCT-216 algorithm

In order to derive a fast DCT-216 algorithm, the transform
needs to be expressed as the product

DCT-216 = D
(C2)
16 ·DCT-216. (23)

Then, the factorizations (16) and (21) are applied recursively
so as to obtain a fast algorithm. Fig. 1 shows the signal flow
graph of this algorithm (the output scaling has been omitted for
clarity). In Fig. 2, the basic building block of the algorithm is
shown that performs the multiplication by the matrix (22). As
all operations inside the block are performed on m-component
vectors, 3m additions and m multiplications are necessary to
compute its output.

IV. AI-BASED HIGH-ACCURACY DCT IMPLEMENTATION

In [12], [13], the AI encoding of the basis functions of
the DCT has been used to design low-complexity and parallel
DCT processors. The essential idea of the AI technique is
to represent nontrivial multipliers as polynomials with integer
coefficients in z, where z is an algebraic integer. In this section,
we use the AI encoding to derive a high-accuracy fast algo-
rithm for the 16-point DCT-2. In the previous section, it has
been shown that the DCT-2 can be recursively decomposed
into the half-size DCT-2 and DCT-4. It is easy to notice that
all nontrivial multiplications are concentrated in the DCT-4
stage. Since the fast DCT-216 algorithm uses three DCT-4
stages of sizes 2, 4 and 8, three different AI encoding schemes
are necessary to implement the 16-point DCT-2.

A. Algebraic integers

In the general case, an algebraic integer is a complex
number that is a root of a certain monic polynomial with
coefficients in Z (the set of integers). For example, z =

2 cos(π/8) =
√
2 +

√
2 is a root of the polynomial p(z) =

z4 − 4z2 + 2. If z is adjoined to the rational numbers, then
the associated ring of AIs is denoted by Q[z] and can be
considered the vector space that consists of polynomials in z of
degree 3 with integer coefficients. Addition and multiplication
of elements of Q[z] are performed modulo p(z).

B. 1-D algebraic integer encoding

To obtain AI encoding scheme for a concrete algorithm,
it is necessary to define both appropriate algebraic integer z
and polynomial p(z), such that p(z) = 0, and then to express
all nontrivial multipliers in the algorithm by polynomials in z
with integer coefficients. Let us consider the general case of
constructing an AI encoding scheme for the DCT-4n, where n
is a power of two. From the previous section, it is known that

TABLE I
AI ENCODING SCHEMES FOR DCT-42 , DCT-44 AND DCT-48

AI representation of multiplier for DCT-42 (z = 2 cos(π/4))
p(z) = z2 − 2

2 cos(π/4) = z

AI representation of multipliers for DCT-44 (z = 2 cos(π/8))
p(z) = z4 − 4z2 + 2

2 cos(π/8) = z
2 cos(2π/8) = z2 − 2
2 cos(3π/8) = z3 − 3z

AI representation of multipliers for DCT-48 (z = 2 cos(π/16))
p(z) = z8 − 8z6 + 20z4 − 16z2 + 2

2 cos(π/16) = z
2 cos(2π/16) = z2 − 2
2 cos(3π/16) = z3 − 3z
2 cos(4π/16) = z4 − 4z2 + 2
2 cos(5π/16) = z5 − 5z3 + 5z
2 cos(6π/16) = z6 − 6z4 + 9z2 − 2
2 cos(7π/16) = z7 − 7z5 + 14z3 − 7z

all multipliers that occur in the fast DCT-4n algorithm have
the form 2 cos(kπ2n), where 0 ≤ k < n. Thus it is reasonable
to define z = 2 cos(π

2n), so that the polynomial p(z) and all
multipliers 2 cos(kπ2n) can be expressed using the Chebyshev
polynomials of the first kind:

p(z) = 2Tn(z/2),

2 cos(kπ/8) = 2Tk(z/2).

This approach has been used to obtain AI encoding schemes
for DCT-42, DCT-44 and DCT-48 that are appears in the
signal flow graph of fast DCT-216 algorithm (Table I).

Please notice that there is no longer any precision problem
since the AI encoding provides an exact representation of
irrational numbers. An example of using AI encoding in
computations is shown in Fig. 3, where the signal flow graph
of a fast DCT-44 algorithm is depicted.

In a similar way, computational schemes for DCT-42 and
DCT-48 can be obtained.

C. Reconstruction step

The AI technique requires representing the outputs of a
transform as polynomials of the form f(z) =

∑n−1
i=0 aiz

i. To
map such a polynomial onto a binary output value, a final
reconstruction stage (FRS) is necessary, which can be based
on Horner’s rule [14]:

f(z) = (. . . (an−1z + an−2)z + an−3)z + · · ·+ a1)z + a0.

For DCT-42, DCT-44, and DCT-48, we use in the FRS the
following approximations of z:

2 cos(π/4) ≈ 1 + 2−1 − 2−3 + 2−5 + 2−7,

2 cos(π/8) ≈ 2− 2−3 − 2−5 + 2−8,

2 cos(π/16) ≈ 2− 2−5 − 2−7 + 2−11.

x0
x1
x2
x3
x4
x5
x6
x7

Σ

Σ

Σ

x8
x9
x10
x11
x12
x13
x14
x15 Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

π/4
4

4

4

4

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

2 2π/4

2 2

Σ

Σ

Σ

Σ Σ

Σ

π/4

3π/8

2 π/8

2

π/16

π/8

3π/8

7π/16

3π/16

5π/16

2

2

2

2

2

2

DCT-28

DCT-48

X8

X0

X12

X4

X6
X2

X14

X10

X3
X1

X7
X5

X11
X9

X15
X13

DCT-42

DCT-44

Fig. 1. Signal flow graph of 16-point DCT algorithm

2cos(a)

Σ

Σ

a
Σ

Jm

m

m

m

m

m

m

m

m

Fig. 2. The building block for fast DCT algorithms

The signal flow graph of the FRS for the DCT-44 is shown
in Fig. 4. The result is obtained after four cycles, in which
the sequence of the polynomial coefficients, a3, . . . , a0, are
passed through the scheme. The reconstruction of DCT-42
and DCT-48 outputs is performed in a similar way.

It should be noted that the FRS introduces some rounding
errors, but they occur at the very end of the transformation
process and are not distributed throughout the computations
as in a fixed-point implementation.

D. Coding gain

The performance of the proposed AI-based fast DCT-216
algorithm was measured using biorthogonal coding gain, de-
fined in [8] as:

Cg � 10 log10
σ2
x(∏n−1

k=0 σ
2
xk
‖fk‖2

) 1
n

,

where n is the number of the basis functions of a transform,
σ2
x is the input variance, σ2

xk
is the variance of the kth

TABLE II
MEASURES OF CODING GAIN

Transform Coding gain

Floating-point DCT-216 9.4555 [dB]
16-point binDCT [8] 9.4499 [dB]
Proposed algorithm (9 bit fractional part) 9.4546 [dB]
Proposed algorithm (12 bit fractional part) 9.4553 [dB]

transform output, and ‖fk‖2 is the norm of the kth synthesis
basis function. As an input signal is a first-order Gaussian
Markov process with zero-mean, unit variance and correlation
coefficient ρ = 0.95 was used (a good approximation of
natural images).

Coding gain is the critical parameter of a transform for
image compression, as its higher value indicates that the
transform compacts more energy into a fewer number of coef-
ficients, and better quality of decoded images can be achieved.
Table II lists the coding gains of the original DCT-216,
16-point binDCT algorithm [8], and proposed algorithm for
computing DCT-216. The results shows that using the AI
technique, multiplierless algorithms for computing the DCT
can be obtained, which have coding gains very close to the
true 16-point DCT.

x0
x1

π/4
2

2

2

2

(z2-2)

Σ

Σ

Σ

Jm

2

2

2

2

z2x2-2x2
z2x3-2x3

x2
x3

x0-x3
x1-x2

z2x2-2x2+x0-x3
z2x3-2x3+x1-x2

-z2x2+2x2+x0-x3
-z2x3+2x3+x1-x2

(z)

Σ

Σ

Σ

(z3-3z)

Σ

Σ

Σ

z2a02+a00

z2a12+a10

z2a22+a20

z2a32+a30

z2(a02 -a12)+(a00-a10)

z2(a22 -a32)+(a20-a30)
z3a12 +za10

z3(a32+a30)-z(3a30+2a32)

X0(z)=z3a12 +z2(a02 -a12)+
+za10+(a00-a10)

X1(z)=-z3a12 +z2(a02 -a12)-
-za10+(a00-a10)

X2(z)=z3(a32+a30)+z2(a22 -a32)-
-z(3a30+2a32)+(a20-a30)

X3(z)=-z3(a32+a30)+z2(a22 -a32)+
+z(3a30+2a32)+(a20-a30)3π/8

3π/8

Fig. 3. Computation of DCT-44 based on algebraic integer encoding. Computational cost: 13 addition and 4 shifts.

Σ

a0, a1, a2, a3

AI (z)

z-1

f(z)

Fig. 4. Final reconstruction step (DCT-44)

V. CONCLUSION

A fast algorithm for the DCT-2 of a power-of-two size has
been developed, which is based on ASP. The main features of
the proposed algorithms are regularity of the signal flow graph
and low arithmetic complexity. Also an implementation of the
fast DCT-216 algorithm based on AI technique is presented.
Algorithms for computing the DCT-2 of a higher size can
be obtained using the same design method. The proposed AI-
based fast implementation of the DCT-216 is characterized by
high performance and can be applied in different image/video
compression applications.

ACKNOWLEDGMENT

This work was supported by the Bialystok University of
Technology under the grant S/WI/4/08 and by the Belarusian
Fundamental Research Fund (F11MS-037).

REFERENCES

[1] R. Joshi, Y. Reznik, and M. Karczewicz, “Efficient large size transforms
for high-performance video coding,” in Proc. SPIE, vol. 7798 (Applica-
tions of Digital Image Processing XXXIII), San Diego, CA, Aug. 2010,
pp. 1–7, paper no. 7798-31.

[2] V. Britanak, P. C. Yip, and K. R. Rao, Discrete Cosine and Sine Trans-
forms: General Properties, Fast Algorithms and Integer Approximations.
Amsterdam: Elsevier/Academic Press, 2007.

[3] K. R. Rao and P. Yip, Discrete Cosine Transform: algorithms, advan-
tages, applications. New York, NY: Academic Press, 1990.

[4] M. Püschel and J. Moura, “The algebraic approach to the discrete cosine
and sine transforms and their fast algorithms,” SIAM J. Computing,
vol. 32, no. 5, pp. 1280–1316, Mar. 2003.

[5] ——, “Algebraic signal processing theory: Cooley-Tukey type algo-
rithms for DCTs and DSTs,” IEEE Trans. Signal Process., vol. 56, no. 4,
pp. 1502–1521, Apr. 2008.

[6] C. Loeffler, A. Lightenberg, and G. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), vol. 2, Glasgow, Scotland, 23–26
May 1989, pp. 988–991.

[7] W. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm
for the Discrete Cosine Transform,” IEEE Trans. Commun., vol. 25,
no. 9, pp. 1004–1009, Sep. 1977.

[8] J. Liang and T. D. Tran, “Fast multiplierless approximations of the DCT
with the lifting scheme,” IEEE Trans. Signal Process., vol. 49, no. 12,
pp. 3032–3044, Dec. 2001.

[9] M. Parfieniuk and A. Petrovsky, “Structurally orthogonal finite precision
implementation of the eight point DCT,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), vol. 3, Toulouse, France,
14–19 May 2006, pp. 936–939.

[10] M. Parfieniuk, “Shortening the critical path in CORDIC-based approxi-
mations of the eight-point DCT,” in In Proc. Int. Conf. on Signals and
Electronic Systems (ICSES), Cracow, Poland, 14–17 Sep. 2008, pp. 405–
408.

[11] M. Vashkevich, M. Parfieniuk, and A. Petrovsky, “FPGA implementation
of short critical path CORDIC-based approximation of the eight-point
DCT,” in Proc. 10th Int. Conf. ”Pattern Recognition and Information
Processing” (PRIP), Minsk, Belarus, 19–21 May 2009, pp. 161–164.

[12] V. Dimitrov and K. Wahid, “Multiplierless DCT algorithm for image
compression applications,” Int. J. ”Information Theories and Applica-
tions”, vol. 11, no. 2, pp. 162–169, 2004.

[13] ——, “On the error-free computation of fast cosine transform,” Int. J.
”Information Theories and Applications”, vol. 12, no. 4, pp. 321–327,
2005.

[14] D. E. Knuth, Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd ed. Boston, MA: Addison-Wesley, 1997.

