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1. INTRODUCTION

The discrete cosine transform (DCT) is critical to many practical applications of digital signal process�
ing such as image/video compression, pattern recognition, speech encoding, medical signal recording
(EEG, ECG), etc. [1]. Being widespread, DCT evokes great interest in constructing efficient algorithms
to compute it [2]. Since the data blocks are of dimension 4 × 4, 8 × 8, or 16 × 16 in popular DCT applica�
tion areas such as image and video encoding, the majority of the existing fast algorithms (FA) for comput�
ing DCT can be applied when the size of the transform is n = 2k [3]. Along with this, there is great interest
in constructing FA for DCT in other applications when the size of the transform is other than powers of
two.

The fast development of computational platforms such as field�programmable gate arrays (FPGA) is
accompanied by creating software systems that automatically generate processor structures for DCT
[4, 5]. Such systems allow finding, in a sense, the optimal structure of the processor for DCT of a given
size for a given computing platform. The automatic search problem of the processor’s structure for DCT
is solved as an optimization problem over the space of alternative DCT computation algorithms. Thus, the
quality of the solution significantly depends on how many alternative fast DCT algorithms exist for the
particular size of the transform. In this work, looking to expand the capabilities of such systems, we pro�
pose a method that helps obtain fast algorithms for DCT of arbitrary size. In a number of cases, it yields
several alternative fast DCT algorithms for one size of the transform.

The proposed method is based on the approach that uses the polynomial algebra  associated
with the DCT [6]. Note that the mathematical apparatus of abstract algebra was shown to be efficient in
synthesizing fast algorithms for discrete transforms as early as in the Soviet period [7–9].

The polynomial algebra is a vector space

. (1)

The algebra consists of the set of polynomials with their coefficients belonging to the field  and their power
being less than n = deg (p(x)). The operation “/” in (1) means that, after the results of summation and
multiplication of the elements in the polynomial algebra are reduced modulo the polynomial p(x):
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where

In [6], the synthesis of fast DCT algorithms is shown to result from the step�by�step decomposition of the
polynomial algebra (1), which requires the step�by�step factorization of the polynomial p(x).

Choosing the field of constants � in (1) is an important part of synthesizing fast DCT algorithms. For
instance, in [10], the field of complex numbers � was chosen as �. This is convenient since any polyno�
mial can be expressed as the product of linear polynomials in � [11]. Nevertheless,  chosen � as the base
field does not answer the question of how we should perform the step�by�step factorization of p(x)
required to synthesize fast algorithms. To solve this problem, we introduce the splitting field of the poly�
nomial p(x). To perform sequential factorization of p(x), we need to find all the subfields of the splitting
field of the polynomial p(x), which is done using Galois’s theory. In each subfield, the polynomial p(x) has
unique factorization that can be used to synthesize FA. Since the coefficients of the Chebyshev polyno�
mial included in the definition of the DCT�related algebra are integer, we choose the field of rational
numbers � as the initial field. When we perform the step�by�step factorization of p(x), the field � is grad�
ually added with numbers not included in �. The field at the last step is the splitting field of the polyno�
mial .

Since we know polynomial algebras for all eight types of discrete cosine and sine transforms [10], the
proposed method can be applied to synthesize fast algorithms for any transform from this class. As a prac�
tical application of the method, we give an example of two fast algorithms of the 7�point DCT of the fourth
type.

2. USING POLYNOMIAL ALGEBRA TO SYNTHESIZE FAST ALGORITHMS 

In this section, we consider theoretical foundations of the synthesis of fast DCT algorithms based on
the concept of polynomial algebra.

Applying the Chinese remainder theorem (CRT), we can factorize polynomial algebra (1) into the
direct sum of one�dimensional subalgebras [10]

(2)

given that α =  are pairwise different zeroes of p(x) and . If we manage to choose the
basis  in the algebra  and set the unit basis (x0) = (1) in each subalgebra

 the mapping  can be written in the matrix form as

(3)

where 0 ≤ k ≤ n, .  is called the polynomial transform. If different bases βk are chosen in each
subalgebra , the resulting polynomial transform is called scaled:

(4)

It is well known that the discrete transforms widely used in digital signal processing such as the discrete
Fourier transform and DCT can be represented as multiplication of the input vector x by the matrix

The fast algorithm of the transform can be written as factorization of the matrix  into the product of
sparse structured matrices. This approach reflects the structure of the fast algorithm and simplifies the
process of obtaining its various variants.

As we mentioned above, the fast algorithm is obtained by factorization of the matrix of the transform
 where Bk is a sparse matrix. If we take into account that  is actually the matrix

of the basis change, we will need to find the sequence of bases  to synthesize FA. In terms
of transform (2), the fast algorithm is obtained if  is decomposed into the sum of one�dimensional
subalgebras in several steps [10].

One of the ways to perform a step�by�step decomposition of  is to use the factorization p(x) =
q(x)r(x). If deg(q) = k and deg(r) = m, we have

 (5)
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 (6)

 (7)

where βi and γj are zeroes of the polynomials q(x) and r(x), respectively, and  is the operation of the direct
sum of the algebras. If we choose the basis c in the subalgebra  and the basis d in , step�
by�step decomposition (5)–(7) can be written as the product of the matrices 

(8)

where  stands for the direct sum of the matrices. The matrix B maps the basis b to the con�

catenation of the bases (c, d) and corresponds to expression (5). The direct sum of the matrices  and
 corresponds to transform (6), which decomposes  and  using the CRT. At stage (7),

the one�dimensional algebras are permuted. In (8), this step is associated with the permutation matrix P,
which performs the mapping . If B is a sparse matrix, (8) is a fast algorithm since the rest of the
multiplier matrices are sparse by definition. We apply the above described procedure in what follows to
synthesize fast DCT algorithms.

3. ALGEBRAIC METHOD OF SYNTHESIZING FAST DCT ALGORITHMS

3.1. Method Description

The proposed algebraic method for synthesizing fast DCT algorithms includes the following steps.

Step 1. Find the polynomial algebra  (and the basis in it) that corresponds to the given type
of DCT.

Step 2. Obtain all subfields  of the splitting field  of the polynomial p(x) using the Galois theory.

Step 3. Factorize the polynomial  step�by�step to match the tower of nested subfields

Step 4. Use the factorization obtained at step 3 and expressions (5)–(8) to synthesize the FA for the
DCT.

Polynomial algebras that correspond to all 8 types of discrete cosine and sine transforms can be found
in [6, 10]. We give information on the Galois theory needed to understand the method in the Appendix (at
the end of this work).

3.2. Synthesizing FA for DCT�4 of size 7

To elaborate on the proposed method, we consider the problem of synthesizing FA for the fourth�type
DCT. The conventional methods of synthesizing FA for DCT are generally applicable when the size of the
transform is a composite number [10]. To show the advantage of the proposed method, we synthesize FA
for DCT�4 with its size being the prime number 7.

Step 1. We consider the polynomial algebra associated with DCT�4 [10]:

 (9)

where Tk(x) and Vk(x) are the Chebyshev polynomials of the first and third types and of the k�th order,
respectively (x = cosψ): 
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Since the roots of 2Tn(x) are  0 ≤

k < n, then, by (3), the polynomial transform for (9) is
given as 

(10)

If we multiply (10) from the left by the scaling diagonal
matrix 

 (11)

we have the DCT�4 matrix:

(12)

Thus, expressions (10)–(12) show that DCT�4 is a
scaled polynomial transform of type (4).
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Step 2. The polynomial algebra associated with the 7�point DCT�4 has the form

(13)

The roots of the polynomial 2T7(x) are  k = 0, 1, …, 6. Over the field , this polynomial

has the factorization 

2T7(x) = 2xP6(x), (14)

since the root α3 = 0. We use this factorization to obtain the FA.

The polynomial P6(x) is irreducible over the field . Its splitting field is  since all the roots of

P6(x) can be expressed via the primitive element  as

  (15)

By the above described FA synthesis method, we need to find the subfields of the field  where P6(x)

can be factorized. To do this, we define the Galois group Gal (P6). We use the method described in [11] to
find all the automorphisms of the field  that form the group Gal (P6). We introduce the following

notations: θ0 = α0, θ1 = α1, θ2 = α2, θ3 = α4, θ4 = α5, and θ5 = α6. Since the elements  are num�
bers conjugate with θ (and can be expressed via θ, see (15)), the substitutions

(16)

k = 0, …, 5 exhaust the entire Galois group Gal (P6). Thus, each element of the Galois group maps the
system of roots of P6(x) into itself. Substitutions (16) are handy to be represented by the permutation
matrices , which are sparse (Fig. 1).

Thus,  is found to be a cyclic group of the sixth order ( ). One knows that  has two sub�
groups viz. the cyclic subgroup of order 2:  and the cyclic subgroup of order 3: 
Figure 2a shows the group Gal (P6) as a lattice of subgroups. By the Galois correspondence, there should exist
a similar grid of subfields of the field  (Fig. 2b).

A question arises of how one can find the subfield  that corresponds to some subgroup H of the Galois
group. In [11], one can find the following solution. If the subgroup  is given, one needs to
form the product

(17)
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the coefficients of this polynomial, by the fundamental theorem of Galois theory, should belong to the

field  and even generate it.

We use this way to find the subfields  and  (Fig. 2b). We consider the polynomial

(18)

with its coefficients belonging to the field . This is the sought field . The field  can be found sim�

ilarly if we consider the polynomial

(19)

with its coefficients belonging to the field  which corresponds to field .

Step 3. Using the two towers of fields in Fig. 2b, we can obtain two different ways of the step�by�step
factorization of the polynomial P6(x):
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(21)

Step 4. Using factorizations (20), (21) and the FA synthesis method described in subsection 3.2, we
obtained two FA for the 7�point DCT�4. For the details of how the FA can be obtained using the known
factorization of the polynomial, see [10, 12].

Figure 3 shows a flow graph of the FA for the 7�point DCT�4 obtained using factorization (20). The
signals taken with the negative sign in the summation blocks are marked red. The dotted line stands for the
internal signals that are multiplied by the constant (which is given beside it). The summator near the input

 summarizes 7 summands and therefore requires 6 two�input summators to be implemented.

Figure 3 does not show the scaling operation for the output data that corresponds to the output data

multiplied by the diagonal matrix . If we do not take the scaling multipliers into account, the FA for
the 7�point DCT�4 (Fig. 3) requires 15 multiplications and 37 summations.

The fast algorithm obtained using factorization (21) is represented as a product of the sparse matrices

 (22)

where

, , ,

, , ,

where , , and  If we do not take into account multipli�

cations by the matrix , 15 multiplications and 49 summations are required to perform algorithm (22).
Thus, the second variant of the algorithm for the 7�point DCT�4 requires 12 summations more than the
first one. 

4. CONCLUSIONS

We proposed the algebraic FA synthesis method for DCT of arbitrary size. The method employs the
DCT represented as the decomposition matrix of the particular polynomial algebra . The fast
algorithm comes as a result of the step�by�step decomposition of this algebra. In turn, the decomposition is
closely connected with the factorization of the polynomial p(x). To solve this problem, we use the mathemat�
ical apparatus of the Galois theory that helps find all the subfields of the splitting field of the polynomial
p(x). In these subfields, the polynomial p(x) has factorization used to obtain the fast algorithm. As a prac�
tical application, we obtained two variants of the FA for the 7�point DCT�4 that require the same number
of multiplications (15) yet differ by the number of summations (37 and 49, respectively). The proposed
method can be used in systems of automatic synthesis of processor structures for DCT [13] to expand the
space of alternative fast DCT algorithms.
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APPENDIX

The Galois Theory: A Brief Review 

The set of all the polynomials of x with the coefficients from the field  is denoted as . Suppose
, the splitting field  of the polynomial  is the minimum extension of the field  that includes

all the roots of . For instance,  is the splitting field of the polynomial p(x) = x2 – 2.  is formed

by adjunction the number  to  The one�to�one mapping of the field  onto it self is called an auto�
morphism. The  automorphism of the field  is the automorphism ϕ such that ϕ(x) = x, . The
group of  automorphisms of the field  is called the Galois group of the polynomial p(x) and is denoted
by Gal (p) or  As an example, we define the function ϕ:  such that

Then, ϕ is the  automorphism of the field . The group of automorphisms  is a
cyclic group of the second order, where id is the  automorphism leaves all the elements of the field 
in their places. Obviously, ϕ ⋅ ϕ = id.

An important result of the Galois theory is that it connects the structure of the subfields of the splitting
field of the polynomial p(x) and the structure of the subgroups of the Galois group . Each sub�
group H of the group  is matched to the subfield  consisting of the elements of  that are
stationary to automorphisms from H. Similarly, each subfield  has its respective subgroup H of the
Galois group that leaves the elements of  in their places. As a result, one needs only to study all subgroups
of the group  to study all the subfields of the field . Each tower (chain of nested fields) 

(23)

is matched to the normal series of nested (in the reverse order) groups

and vice versa (the Galois correspondence).
Thus, the Galois correspondence helps find all the subfields of the decomposition field of the polyno�

mial p(x). Each subfield p(x) can be factorized uniquely into the product of polynomials irreducible over
this subfield. Using (23), we can perform the step�by�step factorization of p(x) needed to synthesize FA
for DCT. 
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