A LOW–DELAY ALGORITHM FOR INSTANTANEOUS PITCH ESTIMATION

E. Azarov, M. Vashkevich, D. Likhachov, A. Petrovsky

Computer Engineering Department, Belarusian State University of Informatics and Radioelectronics Minsk, Belarus

Work was supported by IT ForYou Company and Belarusian Republican Foundation for Fundamental Research (grant No F14MV-014)

Introduction

The paper presents an algorithm for instantaneous pitch estimation specifically designed for real-time applications.

The main features of the proposed algorithms are:

- high estimation accuracy and time resolution;
- low inherent delay;
- efficient processing scheme;
- good performance in noisy conditions;

The general idea:

- 1. the analysis scheme is based on the robust algorithm for instantaneous pitch tracking (IRAPT);
- 2. a non-linear phase analysis filter bank is applied to get a shorter inherent delay;

Pitch estimation schemes

Analysis filter bank

The signal s(m) is decomposed into overlapping bandlimited analytical signals linear-phase low-pass filter $S_{F_{\Delta},F_{c}^{i}}(m)$: $S_{F_{\Delta},F_{c}^{i}}(m) = \sum_{n=-\infty}^{\infty} \frac{\sin(F_{\Delta}n)}{n\pi} w(n) e^{-jF_{c}^{i}n} s(m-n) = A_{F_{\Delta},F_{c}^{i}}(m) \cos\left(\varphi_{F_{\Delta},F_{c}^{i}}(m)\right),$ modulation function where $2F_{\Lambda}$ - bandwidth and F_{c}^{i} - center frequency of the *i*-th band and

w(n) – an even window function. Then instantaneous parameters are evaluated as

$$\begin{array}{rcl} \text{instantaneous amplitude} & \longrightarrow & A_{F_{\Delta},F_{c}^{i}}(m) = \sqrt{R^{2}(m) + I^{2}(m)},\\\\ \text{instantaneous phase} & \longrightarrow & \varphi_{F_{\Delta},F_{c}^{i}}(m) = \arctan\left(\frac{-I(m)}{R(m)}\right),\\\\ \text{instantaneous frequency} & \longrightarrow & F_{F_{\Delta},F_{c}^{i}}(m) = \varphi_{F_{\Delta},F_{c}^{i}}^{'}(m),\\\\ \text{where } R(m) \text{ and } I(m) \text{ are real and imaginary parts of } S_{F_{\Delta},F_{c}^{i}}(m) \text{ respectively.} \end{array}$$

Filter prototype 1 – minimal-phase design 4.

- 1) Calculate frequency response of the filter: $H_{lv}(k, F_{\Delta}) = FFT(h_{lv}(n, F_{\Delta}));$
- 2) Calculate cepstrum $C_{lp}(c, F_{\Delta}) = IFFT(\log |H_{lp}(k, F_{\Delta})|);$
- 3) Set zero for all $c > \frac{N}{2}$ and multiply by 2 except the first:

$$\bar{C}_{lp}(c, F_{\Delta}) = \begin{cases} C_{lp}(c, F_{\Delta}), \ c = 1\\ 2C_{lp}(c, F_{\Delta}), \ 1 < c \le \frac{N}{2}\\ 0, \ c > \frac{N}{2} \end{cases}$$

- 4) Calculate minimum-phase freq. response $\overline{H}_{lp}(k, F_{\Delta}) = e^{FFT(C_{lp}(c, F_{\Delta}))};$ 5) Calculate impulse response of minimum phase filter form its frequency
- response $\overline{h}_{lp}(n, F_{\Delta}) = IFFT\left(\overline{H}_{lp}(k, F_{\Delta})\right).$

5. Filter prototype 2 – IIR approximation

1) Set $\omega_c = 2.64\pi/M$, where M = 360, L = 3

2) Using low-pass Chebychev filter of type 1 obtain first N samples of the impulse response

$$|H(j\omega)|^{2} = \frac{1}{1 + \varepsilon^{2}T_{L}^{2}(j\omega/\omega_{c})}$$

where

- $T_L(x)$ the Chebyshev polynomial of order L,
- the cutoff frequency, ω_{c}
- passband ripple parameter. 8

N = 1080 produces a filter with no ripple in the stoppband

Comparing filter prototypes 6.

IIR approximation has the shortest response time compared to all competitors.

Linear phase – a constant group delay 25ms Minimal phase – variable group delay from 16 to 19ms IIR approximation – variable group delay from 5 to 15 ms

Experimental results

Artificial signals

The proposed technique is compared with other pitch estimation algorithms in terms of gross pitch error (GPE, %) and mean fine pitch error (MFPE, %).

⁴ A. Camacho and J. G. Harris, "A sawtooth waveform inspired pitch estimator for speech and music", *Journal Acoust. Soc.* Am., vol. 123, no. 4, pp 1638-1652, Sep. 2008.

Natural speech

	Female	
PE	GPE	MFPE
4	6.07	1.18
1	4.27	0.80
1	3.78	0.98
6	5.82	0.90
9	4.83	0.93