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Lecture 1 

1.1. Random variables. Probability distribution law 

A random variable (RV) is a variable, which resulting from the experiment with 

a chance outcome, takes on this or that value, therefore being unknown in advance, 

before an experiment, which  value exactly.  

We denote random variables by capital letters: X, Y, Z; their values – by the cor-

responding small letters: x, y, z, and X – is a set of possible values of variable X.  

Examples of random variables: 

1. Experiment – roll dice; random variable Х – is number of dot on cube face; X 

= {0,1,2,3,4,5,6}. 

2. Experiment – computer operating up to the first failure; random variables X – 

are time between failures; X = (0,]. 

Depending on the kind of set X , random variables can be discrete and continu-

ous. 

Random variable Х is called discrete (DRV), if set X is enumerable, i.e. all its 

elements can be arranged in a certain order and be enumerated. 

Random variable Х is called continuous, indiscrete (СRV), if set X – is innumer-

able set. 

Distribution law of the random variable Х is any function (rule, table, etc.), estab-

lishing a correspondence between random variable values and probabilities of their 

occurrence, and allowing to find probabilities of the every possible event

{ },  ,p a X b a b   , related to a random variable. 

 



1.2. Cumulative distribution function 

Cumulative distribution function F (x) of the random variable X is a function 

whose value is the probability that a random variable X has a value less than or equal 

to the argument of the function x: 

 

      F x p X x  . (1.1) 

Properties of X cumulative distribution function: 

1. F (-) = 0.  

2. F (+) = 1. 

3. F (x1) F (x2), at x1 <x2. 

Proving. 

 

A = {X <x1}, B = {x1X <x2}, C = {X <x2}, then 

 C=A+B, p (C) =p (A) +p (B), p (C) =F (x2), p (A) =F (x1), F (x2) =F (x1) +p (B), p 

(B) 0 F (x1) F(x2). 

4. Probability of the random variable X value getting to the interval: 

    1 2 2 1(    )    p x X x F x F x    . (1.2) 

Proving.  p (x1 X <x2) =p (B) =p (C)–p (A) = F (x2) – F (x1). 

We illustrate these properties by means of the visual geometrical interpretation. 

For this purpose, we consider a random variable as random point Х on the axis OX, 

which, as a result of the experiment, can take this or that position.  

 



Then cumulative distribution function F (x) is the probability that random point 

Х as an experimental result will get to the left of the point х. We increase х, moving the 

point to the right along the abscissa axis, it is obvious therefore, that the probability of 

fulfilling inequality X <x cannot be decreased (property 3). With reducing х to – – the 

event X <x becomes impossible, i.e. F (–) = 0 (property 1). With increasing х to + 

- becomes certain, i.e. F (+) = 1 (property 2). 

Cumulative distribution function is used when considering both discrete and con-

tinuous random variables. 

 

1.3. Distribution set 

For describing discrete random variables, along with cumulative distribution 

function F (x), the probabilities distribution set (probability mass function) is used. 

The distribution set of the discrete RV X is a table, in the top line of which all 

possible values  of RV x1, x2..., xn (xi-1 <x
i
) are listed, and in the bottom  line — proba-

bilities of their occurrence p
1
, p

2
..., p

n
, where pi = p {X = x

i
}.  

x
i
  x1 x2 ... xn 

pi  p
1 p

2 ... p
n 

Since events {X = x1}..., {X = xn} are incompatible events and form a entire group, 

the control relationship is valid 

 1 2  ...     1np p p    .  (1.3) 

The polygon of probabilities is a graphic representation of the probabilities dis-

tribution series. All possible random variable values are put on the abscissa axis, and 

probabilities of these values are put on the axis of ordinates. For visualization, straight-

line segments connect the obtained points. The distribution polygon, like the distribu-

tion set, completely characterizes a random variable and is one of the distribution law 

form. 



Cumulative distribution function of any discrete random variable is the discontin-

uous step function, the jumps of which occur at the points corresponding to possible 

values of the random variable, and are equal to probabilities of these values: 

 ( ) ( )
i

i

x x

F x p X x


  , (1.4) 

where summation is taken over all values of x i which are less than х. 

1.4. Probability density function 

The random variable Х is called continuous, if its cumulative distribution func-

tion F (x) – is continuous and differentiated function for all values of argument.  

For continuous cumulative distribution function F (x) the probability of any sep-

arate value of the random variable should be equal to zero, i.e. there should be no jumps 

at any point. Such events – possible, but with zero probability – appear only when 

considering experiments, which are not reduced to the occurrence scheme. This is sim-

ilar to a body having a certain weight, but not one of the points inside the body possess 

a finite mass. The small volume possesses a finite mass, but it approaches to zero with 

volume decreasing, and in the limit is equal to zero for a point. That is, for continuous 

probabilities distribution, the probability of getting to the arbitrarily small section dif-

fers from zero, then the probability of getting to a strictly certain point exactly equals 

to zero. 

The probability of the continuous random variable X getting to the section from x 

to x+x is equal to the cumulative distribution function increment on this section:  

p {x X <x+x} =F (x+x) – F (x). Then the probability density on this section is equal 

to
{ }p x X x x

x

  


. Going to the limit at 0x  , we obtain the probability den-

sity at the point x: 

 
0 0

{ } ( ) ( ) ( )
lim lim ( ) ( ).
x x

p x X x x F x x F x dF x
F x f x

x x dx   

    
   

 
 

The obtained function is one of the forms of the of continuous random variables 

distribution law forms. 



The probability density function (distribution density) f (x) of the continuous ran-

dom variable X characterizes the probability density in the neighborhood of point x and 

is equal to its cumulative distribution function derivative  

 
( )

( ) ( )
dF x

f x F x
dx

  , (1.5) 

and the probability density plot is called a distribution curve. 

Let there is point x and adjacent to it segment dx. The probability of the random 

variable X getting to this interval equals  f (x) dx. This variable is called a probability 

element. The probability of the random variable X getting to the arbitrary section [a, 

b) is equal to the sum of probability elements on this section: 

 { } ( ) .

b

a

p a X b f x dx     (1.6) 

In geometrical interpretation { }p a X b  is equal to the area limited from the 

top by the probability density function curve f (x) and section [a, b). 

Relationship (4.6) allows to express the cumulative distribution function F (x) of 

the random variable X in terms of its density: 

 ( ) { } { } ( ) .

x

F x p X x p X x f t dt


          (1.8) 

The basic properties of the probability density function: 

1. Probability density function is non-negative f (x) 0, since its primitive F (x) is 

non- decreasing function (see property 3 F (x), section 1.2). The probability density 

function is equal to zero (f (x) = 0) for those values of x, which the random variable X 

never assumes in an experiment. 

2. The normalizing condition: ( ) ( ) 1.f x dx p X





          (1.9) 

The total area, limited by the distribution curve and the abscissa axis, is equal to 

1. 

  



Lecture 2 

2.1. Numerical characteristics of the random variable 

The distribution law of the random variable is a mathematical form, which com-

pletely describes a random variable from probabilistic point of view. However, in many 

practical problems, there is no need for such complete description, and it is enough to 

specify only certain numerical parameters, characterizing significant distribution fea-

tures. Such numbers are called numerical characteristics of a random variable. 

 

2.1.1. Mathematical expectation characterizes the random variable weighed 

mean value and is defined by formulas: 

  

{ } , for

=M[ ]

( ) , for .

i i

i

X

x p X x DRV

m X E X

x f x dx CRV





  


  
 





.  (2.1) 

where mx denotes the number obtained after calculations by equation (5.1); 

DRV - discrete random variable; 

CRV - continuous random variable; 

M [X] – is the expectation operator. 

As it is seen from (2.1), as mathematical expectation, the «weighed mean value» 

is used, therefore each of the random variable values is considered with the "weight" 

proportional to the probability of this value. 

The physical meaning of the mathematical expectation – is the mean value of the 

random variable, i.e. that value, which can be used instead of the random variable in 

approximate calculations or estimations. 

The mathematical expectation possesses the following properties: 

1. M [c] = c. 

Proving. We consider constant c as a random discrete variable which assumes one 

value c with probability р = 1. 

 



2. M [X+c] = M [X] +c = Xm c . 

Proving.M[ ] ( ) ( ) ( ) ( ) XX c x c f x dx x f x dx c f x dx m c

  

  

             

3. M [cX] = cM [X] = Xc m . 

Proving.M[ ] ( ) ( ) XcX cx f x dx c x f x dx c m

 

 

        

2.1.2. Ordinary moments. The k-order ordinary moment ( )k x  of the random 

variable X is the k-degree mathematical expectation of this random variable: 

 

 
1

, for ;

( ) M[ ]

( ) ,  for .

N
k

i i

ik

k

k

x p DRV

x X

x f x dx CRV












  

 







.  (2.2) 

We consider several of the first k ordinary moments: 

 k = 0
0

0 ( ) [ ] [1] 1x M X M    ; 

k = 1 – a 
1

1( ) [ ] [ ] Xx M X M X m    – mathematical expectation; 

k = 2 – 
2

2( ) [ ]x M X  – is used for dispersion calculation. 

Centered random variable X is the random variable, mathematical expectation 

of which is at the beginning of the origin of coordinates (at the number axis center), i.e 

[ ] 0M X  . 

The centering operation (transfer from the non-centered variable Х to the centered

X ) looks like 

XX X m  . 

 

2.1.3. Central moments. The k-order central moment ( )k x of the random variable 

X is the k-degree mathematical expectation of the centered random variable X : 



 
1

( ) , for ,

( ) M[ ]

( ) ( ) , for .

N
k

i X i

ik

k

k

X

x m p DRV

x X

x m f x dx CRV









 


  

  







.  (2.3) 

We consider several of the first k ordinary moments: 

k = 0 0

0 ( ) [ ] [1] 1x M X M    ; 

k = 1 1

1( ) [ ] [ ] 0x M X M X    ; 

k = 2 – a 2 2 2 2 2

2 2( ) [ ] [( ) ] [ ] 2 [ ] ( )X X X x Xx M X M X m M X m M X m x m D          – disper-

sion or variance. 

2.1.4. The random variable dispersion (variance ) characterizes the degree of dis-

persion (scattering) of random variable values with respect to its mathematical expec-

tation and is determined by formulas: 

2 2 2

1 12

2 2

2 2 2

( ) ,  for ;

[ ] ( ) (x)

( ) ( ) ( ) , for .

N N

i X i i i X

i i

x X

X X

x m p x p m DRV

D D X x m

x m f x dx x f x dx m CRV

 
 

 

 


  


     

   



 

 

 (2.4) 

Dispersion properties: 

1. D [c] = 0. 

Proving.
2 2[ ] ( [ ]) ( ) [0] 0D c M c M c M c c M             

2. D [X+c] = DX. 

Proving. 

2 2 2[ ] ( [ ]) ( ) [( ) ]X X XD X c M X c M X c M X c m c M X m D                   

follows from property 2 (items 2.1.1) of the mathematical expectation. It becomes 

clear, if it is taken into account, that variables Х and Х+с differ only by the reference 

and are equally dispersed about their mathematical expectations. It is obvious, that the 

centering operation does not change the random variable dispersion:

[ ] [ ] [ ]XD X D X m D X   . 



3. D [cX] = c2DX. 

Proving.  
22 2 2 2 2 2[ ] [ ] [ ] ( [ ] )X XD cX M c X M cX c M X m c D      

The random variable dispersion has the dimension of the random variable square, 

therefore, dispersion is not quite convenient for analysing the value range of the varia-

ble Х. The root-mean-square deviation (RMSD), the dimension of which matches the 

random variable dimension, does not feature this disadvantage. 

 

2.1.5. The root-mean-square deviation (standard deviation) of the random vari-

able X characterizes the range width of values X and is equal to 

 [ ] [ ]X X D X    . (2.5) 

RMSD is measured in the same physical units, as the random variable. 

Rule 3. Practically, all random variable values are in within the interval 

 [mX – 3X; mX + 3X;]. (2.6) 

Mathematical expectation and dispersion (or RMSD) – are most often used char-

acteristics of a random variable. They characterize the most important distribution fea-

tures: its position and degree values dispersion. For more detailed description, the or-

dinary and central moments of the higher orders are used. Beside the mathematical 

expectation, in practice other characteristics of the value distribution position are also 

often applied. 

2.1.6. The random variable mode is equal to its most probable value, i.e. that value 

for which probability pi (for a discrete random variable) or f (x) (for a continuous ran-

dom variable) reaches the maximum: 

( ) max,   ( ) max.p X Mo f Mo    

Distribution with one maximum of the probability density function is called "uni-

modal". If the distribution polygon or distribution curve have more than one maximum, 

distribution is called "polymodal". If in the middle the distribution features not the 

maximum, but the minimum, it is called "antimodal". 

 



2.1.7. The median of the random variable X is equal to such its value, for which 

the condition p {X <Me} = p {X Me} is fulfilled. The median, as a rule, exists only for 

continuous random variables. The value of Me can be determined as the solution of 

one of the following equations: 

  ( ) 0,5;  ( ) 0,5;  ( ) 0,5.

Me

Me

f x dx f x dx F Me





     (2.7) 

In point Me the area limited by the distribution curve is halved. 

 

3.1.8. Fractile p  of the random variable X - is such its value, for which the 

condition is fulfilled 

 

 p {X <p} = F (p) = p. (2.8) 

It is obvious, that the median is the fractile 
0,5

. 

  



Lecture 3 

3.1. Uniform distribution 

 

A continuous random variable Х has uniform distribution if its probability den-

sity in a certain interval a; b] is constant, i.e. if all values of X in this interval are 

equiprobable:  

 

0, ,

1
( ) , ,

0, .

x a

f x a x b
b a

x b





  



0, ,

( ) , ,

1, .

x a

x a
F x a x b

b a

x b





  




 (3.1) 

The random variable with uniform distribution is designated as ),( baU . 

The density and of uniform cumulative distribution function plots are more presented 

below at b = 3 and a = 1. 

 

Numerical characteristics of the uniformly distributed random variable: 

 
2( )

,  
2 12

X X

a b b a
m D

 
  . (3.2) 

If necessary to determine parameters a and b by known mX, DX , the following 

formulas are used: 

 3,  3X X X Xa m b m     . (3.3) 

Occurrence conditions: 

1. Random variable Х – round-off errors at the limited digit grid: 

- rounding off to minor integer [ 1,0],  0,5XX m    , 



- rounding off to major integer [0,1],  0,5XX m  , 

- rounding off to the nearest integer [ 0,5;0,5],  0XX m   , 

where 1 – is the digital resolution. 

2. Random variable Х – is the value readout error from the measuring device an-

alog indicating scale, [ 0,5;0,5],  0XX m    , where 1 – is the scale division value. 

3. Pseudo-random variables generators, for example RANDOM, RND built-in to 

high level programming languages. 

 

3.2. Exponential distribution 

 

The continuous random variable X assuming only positive values has exponential 

distribution, if its probability density and cumulative distribution function are equal to: 

 

 

1
, 0,

( )

0, 0;

x

e x
f x

x








 
 

  
1 , 0,( )

0, 0,

x

e xF x

x




   
 

 (3.4) 

where  – distribution parameter (> 0). 

The random variable with exponential distribution is denoted as )(E
. 

The density and exponential cumulative distribution function plots are presented 

below at =1. 

  

Numerical characteristics of the exponential random variable: 



 
2,  X Xm D   . (3.5) 

Occurrence conditions. Random variable T – is the time interval between two 

adjacent events in the simple or Poisson stream of random events, therefore, the distri-

bution parameter – 
1


is the stream intensity. 

3.3 Normal (Gauss) distribution  

 

Probability density function ),( 2aN of normal random variable: 

0,,
2

1
)( 2

2

2

)(

2

2




 




 Raеxf

ах

. 

 

 

The mathematical expectation of normal random variable 

aaNE )),(( 2 , 
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Dispersion of normal random variable 
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Fig. 3.2 

 

 

 

Cumulative distribution functions of normal random variable: 

 

  ( ) 0.5
x a

F x


 
  

 
,  

Where 

2

2

0

2
( )

2

x t

x e dt




   — Laplace function.  

 

 

 

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

N(0,0.5)

N(0,1)

N(0,2)



 

 

The table 3.1 

  



 

3.4 Сhi-square distribution  

 

The random variable 





k

i
ik x

1

22
, 

where – the kxxx ,...,, 11 independent normal distributed random variables 

)1,0(N ,  

have 
2  (Сhi-square)  distribution  with k degrees of freedom and notated as )k(H1 . 

From definition of  
2  (Сhi-square)  distribution obviously property: 

)qp(Hqp  1
22  .                                        (3.6) 

where )p(Hp 1
2 

, 
)q(Hq 1

2  , and
2
p , 

2
q are independent, 

 

Probability density function of 
2 distribution  with k degrees of Freedom 

)(1 kH
: 
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where 










2

k

 – Gamma function which is defined by expression 

dyeyx yx 




0

1)(
. 

Gamma function possesses following properties:  

)()1( xxx  , !)1( kk  , 1)2()1(  , 











2

1

. 

Curve probability density of this distribution are represented on fig. 3.3. 



 

Fig. 3.3 

These are the asymmetrical curves located on a positive semiaxis of abscisses. Curves 

have on one maximum in a point 2 kx .  

The mathematical expectation of 
2  (Сhi-square) distribution: 

kE k )( 2
. 

The dispersion of distribution of 
2  (Сhi-square) distribution: 

kD k 2)( 2  . 

     The table below allow to solve the equations 

   )( 22

kP , 10  . 

 

 

 

 

The table 3.2 



 

 

  



 

3.5 Student distribution  

 

     Random variable 

n
v

u
t 

, 

where u and v –independent random variables, and )1,0(Nu )n(Hv 1 , 

 have Student distribution of with k  degrees of freedom and notated as 
)n(T1 .  

 

Probability density function of Student distribution  
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. 

Curve probability density of Student distribution are represented on fig. 3.4. 

 

Fig. 3.4 



At n  Student distribution converge to normal distribution )1,0(N . However at 

small n ( 30n ) it considerably differs from the normal. 

The mathematical expectation of Student distribution ( 2n ): 

0)t(E
. 

The dispersion of distribution of Student distribution ( 2n ): 

)2/()(  nntD . 

 There are table satisfying to equality 

  )( ,, kk tttP , 

The table 3.3 

 



3.6 Fisher distribution 

 

 Random variable 

mw

nv
f  , 

where v and w –independent random variables, )m(Hv 1 )n(Hw 1
 

have Fisher distribution with nm,  degrees of freedom and notated as 
)n,m(F1 . 

 

Probability density function of Fisher distribution  
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where n, m -  whole numbers (n > 0, m >0) 

 

Curve probability density of Fisher distribution are represented on fig. 3.5. 



 

Fig. 3.5 

 

These are the asymmetrical curves located on a positive X-semiaxis  which reach a 

maximum near to a point 1x . 

The mathematical expectation of random variable with Fisher distribution 

2


n

n
mX , 

The dispersion random variable with Fisher distribution: 

)4()2(

)2(2
2

2






nnm

nmn
DX . 

 

3.7 Gamma distribution 

 

 Probability density function of random variable with Gamma distribution: 



 




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
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
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x
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a , 

where a, b - distribution parameter (a > 0, b >0) 

The mathematical expectation of random variable with Gamma distribution 

abmX  , 

The dispersion random variable with Gamma distribution: 

2abDX  . 

  



Lecture 4 

Let a certain random variable Х is exposed to the determinate transformation  , 

as the result of which the variable Y will appear, i.e. ( )Y x . It is obvious that variable 

Y will be random, and, as a rule, it is necessary to determine the distribution law and/or 

numerical characteristics of the random variable Y under the known distribution law 

of variable Х and the form of transformation . 

 

4.1. The distribution law of the random argument function 

In case that Х – is a discrete random variable with a known probabilities distribu-

tion series:  

then it will be easy to determine the probabilities series of Y. Since ( )Y x , then the 

value ( )i iy x will appear with probability pi: 

 

 

 

From the given series, by ordering and combining identical values, we obtain the dis-

tribution series of random variable Y: 

 

 

 If Х – is a continuous random variable with a known probability density ( )f x , 

then the algorithm of obtaining the distribution law ( )Y x depends on the kind of . 

We consider the abscissa axis section [a, b], on which all possible values of variable Х 

are put, i.e. ( ) 1p a X b   , in a special case ,a b    . The way of solving this 

problem depends on the behavior of function  on the section [and, b]: whether it is 

monotonic on this section or not. 

xi x1 x2 … xn 

pi p1 p2 … pi 

yi (x1) (x2) … (xn) 

pi p1 p2 … pn 

yi y1 y2 … ym 

pj p1 p2 … pm 



4.1.1. Monotonically increasing function 

Let  ( )Y x – is a monotonically increasing function. We determine the cumu-

lative distribution function ( )G y of the random variable Y. By definition, it is equal to 

( )

( ) ( ) ( ( ) ) ( ( )) ( )

y

XG y p Y y p x y p X y f x dx



 


        , 

where (y) – is the inverse function of (x). 

 

To fulfill the condition Y y , it is necessary and sufficient, that the random var-

iable Х will get on the abscissa axis section from a to (y). Thus, the cumulative dis-

tribution function Y for the argument X distributed in the interval [a, b], equals: 

 

( )

0, ( ),

( ) ( ) , ( ) ( ),

1, ( ).

y

X

a

y a

G y f x dx a y b

y b





 







  

 

  (4.1) 



4.1.2 Monotonically decreasing function 

Let  ( )Y x – is  a monotonically decreasing function. We determine the cu-

mulative distribution function ( )G y of the random variable Y. By definition, it is equal 

to 

( )

( ) ( ) ( ( ) ) ( ( )) ( ) ,X

y

G y p Y y p x y p X y f x dx


 


         

where (y) – id the inverse function of (x). 

 

To fulfill the condition Y y , it is necessary and sufficient, that the random var-

iable Х will get on the abscissa axis section from х = (y) to b. Thus, the cumulative 

distribution function Y for the argument X distributed in the interval [a, b], equals 

 
( )

0, ( ),

( ) ( ) , ( ) ( ),

1, ( ).

b

X

y

y b

G y f x dx b y a

y a





 



 



  

 

  (4.2) 



 

The probabilities density of the random variable ( )Y x for any monotonic 

case looks like: 

 

min

min max

max

0, ,

( ) ( ) ( ( )) ( ) , ,

0, .

X

y y

g y G y f y y y y y

y y

 




     




 (4.3) 

Example. Let the random variable Х has the normal distribution law

f x e x( ) / 1

2

2 22

 


, Y X 3 . Find g y( ). 

Function ( )Y x is strictly monotonic, differentiable and has inverse

3( )X y Y  . We apply formula (7.1). Since  

2 / 3 21/3 / 2

1/3

2/3

1
( ( )) ( ) ,

2

1
( ) ( ) ,

3

y

X Xf y f y e

y y
y


 



 

  
 

then the desired probability density function of functionY X 3 : 

2 / 3 2/ 2

2 /3

1
( )

3 2

yg y e
y



 

 . 

 

 

 

 

 

 

 

 

 



4.2. Simulating of the random variable with the given distribution law by func-

tional transformation 

Here we consider an important for the practice problem about simulating the 

continuous random variable Y with the given distribution law by the functional trans-

formation of other random variable with the known distribution law.  

The problem is put as follows: there is a random variable X with uniform distri-

bution in the range 0; 1] 

0, 0,

( ) 1,0 1,

0, 1.

x

f x x

x




  
   

Question: to which functional transformation ( )Y x it should be subjected, so 

that the random variable Y had the given cumulative distribution function ( )G y ?  

We  prove, that for this purpose it is necessary to subject the random variable X  to 

functional transformation
1( )Y G x , 

where  
1( )G x

 - is the inverse function of the required cumulative distribution function

( )G y .  

Let's represent the plot of the cumulative distribution function ( ) ( )G y p Y y  : 

 



Since the cumulative distribution function ( )G y of the continuous random vari-

able Y is a continuous monotonically increasing function, then the inverse function 

1( )G x

 will also be a continuous monotonically increasing function, and equations 

from paragraph 4.1.1 can be applied: 

( ) ( )

1

0

( ) ( ( ) ) ( ( )) ( ) 1 ( )

G y G y

Xp Y y p G x y p X G y f x dx dx G y



        

Which was to be proved (Q.E.D. (quod erat demonstrandum). 

Example. Let it is required to obtain a random variable Y ,which has the expo-

nential distribution law  

1 , 0,( )

0, 0,

y

e yG y

y




   
 

 

 

We find  inverse function of the desired cumulative distribution function ( )G y : 

1( ) 1 ( ) ln(1 )
y

x G y e y G x x 


        . 

 

  

1( )G x



 

Lecture 5 

5.1. The law of large numbers 

Let the experiment is carried out, in which we are interested to know the value 

of the random variable X. When single replication, it is impossible to tell in advance, 

which value the variable will assume. But in case of n-fold (n> 100... 1000) experiment 

repetition, the "mean" (arithmetic mean) value of variable Х loses a random character 

and becomes close to a certain constant. 

 The law of large numbers – is the set of theorems determining the conditions of 

tending of random variables arithmetic mean values to a certain constant when carrying 

out a great number of experiments. 

 

5.1.1. Chebychev’s inequality 

 

Chebychev’s inequality. For any random variable X with mathematical expectation mX 

and dispersion DX  the following inequality is fulfilled: 

 2
( ) X

X

D
p X m 


   , (5.1) 

where 0  . 

Proving. We consider probability
( )p X 

: 

2 2 2
2

2 2 2 2

2
2

2 2

1
( ) ( ) ( ) ( ) ( )

1 [ ]
( ) .

x x x x

x x
p X f x dx f x dx f x dx x f x dx

x

M X
x f x dx

   




  

 

   





      

 

   


 

Thus

2

2

[ ]
( )

M X
p X 


  . Having replaced the non-centered variable X by 

the centered XX X m  , we will obtain

2

2 2

[( ) ]
( ) X X

X

M X m D
p X m 

 


    . 



Example. We determine the probability that the random variable will assume the 

value outside the interval3 X . We suppose in Chebychev’s inequality 3 X  , we 

have: 

2

1
( 3 ) 0,11

9 9

X
X X

X

D
p X m 


     . 

Chebychev’s inequality gives only the top border of probability of the given devia-

tion. The probability value cannot exceed this border (0,11) at any distribution law. 

Therefore, the rule 3 X is fulfilled with probability not less than 0,89. 

Probability convergence. The sequence of random variables Xn converges in 

probability to variable a, 
p

n
n

X a

 , if with increasing of n the probability of that Xn 

an a will be arbitrary close, unrestrictedly verge towards unity: 

( ) 1 ,np X a       

where, – are  arbitrary small positive numbers. 

 

One of the most important forms of the law of large numbers – Chebychev’s 

theorem, it establishes relation between the arithmetic mean of the observable random 

variable values and its mathematical expectation. 

 

5.1.2 Chebychev’s theorem 

Let n identical independent experiments have been carried out, in each of which 

a random variable X has assumed values Х1, Х2, …, Хn. At a great enough number of 

independent experiments, the arithmetic mean of the random variable X values con-

verges in probability to its mathematical expectation: 

 
1

1 n p

i X
n

i

X m
n 



 . (5.2) 



Proving. We consider variable . We determine numerical charac-

teristics of Y (see (11.5), (11.7)): 

1 1

2 2
1 1

1 1 1
[ ] [ ] ;

1 1 1
[ ] [ ] .

n n

Y i i X X

i i

n n
X

Y i i X

i i

m M X M X nm m
n n n

D
D D X D X nD

n n n n

 

 

   

   

 

 
 

Let's write down Chebychev’s inequality for variable Y: 

  2 2
1

1
.

n
Y Y

Y i X

i

D D
p Y m p X m

n n
 

 

 
       

 
  

No matter how small is number , it is possible to take such a large n , so that inequality 

2

XD

n



  will be fulfilled, where – is an arbitrary small number. Then

1

1 n

i X

i

p X m
n

 


 
   

 
 . When transition to complementary event

1

1
1

n

i X

i

p X m
n

 


 
    

 
 , i.e. Y converges in probability to mX. 

 

 

12.1.3. Bernoulli theorem 

Let  n identical independent experiments have been carried out, in each of which 

event A is possible with probability р.  Then the  frequency of occurrence of event  A 

in n experiments converges in probability to probability of occurrence of A in one ex-

periment: 

 
*( ) ( )

p

n
p A p A


 , (5.3) 

where  
*( )p A – is frequency of event A in n experiments

*( )
m

p A
n

 ; 

m – is the number of experiments, in which event A has occurred; 

1

1 n

i

i

Y X
n 

 





n – is the number of the conducted experiments. 

Let  random variable X – is the indicator of event A: 

A

A
X

,

,

0

1





 , 

then Xi – the indicator of event A in i-experiment.  

Numerical characteristics of indicator  X of random event (see (2.1)): 

, 

where q  –  is the probability of realization A, q = 1 – p. 

Let's apply Chebychev’s theorem: 

*

1

1
( ) ( )

n p

i X
n

i

m
X p A m p p A

n n 


     . 

 

 12.2. The central limit theorem 

The given theorem determines conditions at which a random variable with the 

normal distribution law appear. Various forms of the central limit theorem differ be-

tween themselves by the conditions imposed on distributions of the sum of random 

summands Х1, Х2, …, Хn. The more strict are these conditions, the more easier the the-

orem is proved; the wider conditions, the more difficult  is the proving. Here we con-

sider one of the most simple forms of this theorem, namely, the central limit theorem 

for equally distributed summands. 

Theorem. If Х1, Х2, …, Хn – are independent random variables having one and 

the same distribution with mathematical expectation m and dispersion 
2 t, then with 

unbounded increasing of n (n ) the distribution law of their sum is un-

boundedly approaching to the normal law with parameters 

  ,  Y Ym n m n    .  (5.4) 

 

 

,X Xm p D qp 





n

i

iXY
1



A more general form of the central limit theorem we present without proving. 

Lyapunov's theorem. If Х1, Х2, …, Хn – are independent random variables having 

similarly identical dispersions  для iD D i  , then with unbounded increasing of n 

(n) the distribution law of their sum Y X i
i

n





1

 is unboundedly approaching to 

the normal law with parameters 

 

  
1 1

,  
n n

Y i Y i

i i

m m D
 

   .  (5.5) 

The requirement ,iD D i  means that no one of the summands is not dominant 

(the effect of all Хi on the sum Y is approximately equal). 

Thus, normal distribution occur when a lot of independent (or weakly depend-

ent) random variables are summed, which are comparable by their influence on the 

sum dispersion. In practice, such conditions are quite often. Let we consider deviation 

Y of a certain parameter, for example, of a radio-electronic device from the face value. 

This deviation (at known assumptions) can be presented as the sum n of elementary 

deviations associated with separate reasons: 

Y X i
i

n





1

, 

where, for example: 

X1 – deviation caused by the temperature effect; 

Х2 – deviation caused by the air humidity effect; 

… 

Хn – deviation, caused by insufficient product material purity. 

The number n of these elementary deviations is quite great, as well as the number 

n of the reasons causing the total deviation Y. Usually the summands Х1, Х2, …, Хn are 

comparable in the effect on the sum dispersion. Really, if any of the random variables 

Х1, Х2, …, Хn  will produce significantly greater influence on the sum dispersion than 

all the others, it would be natural to take special measures to eliminate the main reason 



of dispersion; if no such measures are undertaken, it can be assumed that remaining 

random summands are comparable in their effect (uniformly small) on the sum disper-

sion. 

The normal law is widely spread in engineering. In most cases parameter meas-

urement errors, control commands errors and an input errors of various quantities into 

the technical device are distributed by normal (or close to normal) law. Such error can 

be usually presented in the form of the sum of many «elementary errors» Xi, each of 

which is associated with a separate reason almost independent from others. Laplace 

and Gauss substantiated the normal law for the first time exactly in application to the 

theory of errors.  

In practice, when summing up variables with similar distribution law, the distri-

bution law can be considered normal, if n10... 20. 

Example. Let Х – is the random variable uniformly distributed within the interval 

[0, 1], and is generated, for example, by the pseudo-random variables generator. Based 

on the central limit theorem, the variable 

 mxY
i

i  


)6(
12

1

  (5.6) 

will have almost normal distribution law N(m, σ) with parameters m, σ. 

  



Lecture 6 

6.1. Mathematical statistics. Basic concepts 

Mathematical statistics is the science dealing with methods of processing the 

experimental data, obtained as a result of random phenomena observation. Each  such 

result can be presented as a set of values assumed by one-dimensional or multidimen-

sional random variable resulting from n experiments. 

The experiment  (general) population is the set of objects from which the sample 

is made. Each of the objects gives a fixed value of the random variable X. The number 

of objects N included into the general population is called population size. It can consist 

of uncountable set of objects. 

Sample – is the set 1 2{ , ,..., }nx x x of randomly selected objects (values) from the 

general population. The sample  size n is the number of objects included into the sam-

ple. 

The sample features the requirement: it should adequately represent the general 

population, i.e. to be to representative. By the law of large numbers it can be stated 

that the sample will be representative, if it is drawn randomly and each of the general 

population objects has the same probability to get to the sample.  

The elementary processing of sample consists in its sorting, that is in an arrange-

ment of sample values as their increase: )n()()( x...xx  21 . The sample located in 

increasing order of values 

 1 2, ,..., nx x x , 

is called as a variational series. The element kx of a variational series is called 

variants or k-th order statistics. So, minimum sample values is called as first order sta-

tistics, 

121
ˆ),...,,min( xxxx n  , 

Maximum – n-th order statistics, 

nn xxxx ˆ),...,,max( 21  . 



     Example 6.1. For studying of growth of 5 men in centimeters has appeared equal are 

at random selected 1751 x 1902 x . 1803 x 1734 x 1785 x
.This data makes 

sample in size 5n . A variational series for the given sample looks like : 173ˆ
1 x ,

175ˆ
2 x , 178ˆ

3 x , 180ˆ
4 x , 190ˆ

5 x . 

One of the main tasks of mathematical statistics is to determine the distribution 

law of random variable Х. 

6.2. The distribution law estimate 

6.2.1. Empirical cumulative distribution function 

Empirical cumulative distribution function of the random variable X is equal to the 

frequency that X will assume the value smaller, than the function x argument, and is 

determined by the formula 

 

1

* *
1

0,    ,

( ) ( ) ,  

 

1,   .

i i

n

x x

i
F x p X x x x x

n

x x








    






 (6.1) 

At n  the empirical cumulative distribution function *( )F x converges in proba-

bility to the theoretical cumulative distribution function and is its consistent estimate, 

that is for all x  

*( ) ( )
p

n
F x F x


 . 

The proof. We will consider event )( xXA  . Then )()( xFpAP  . As

* *( ) ( )
m

F x p A
n

  , 

where m –quantity of sample values which it is less x,  

 
*( )p A - frequency of event A  

and under the Bernoulli theorem it is received 



*( ) ( )
p

n
p A p A


 , 

Or 

*( ) ( )
p

n
F x F x


 . 

 

Fig. 6.1 Empirical )(xF  and theoretical )(xF of cumulative distribution functions 

Example 6.2. We will use the data about growth of men from an example 6.1 sections 

1.2 for obtaining the empirical distribution function. Since the variational series looks 

like 173ˆ
1 x , 175ˆ

2 x , 178ˆ
3 x , 180ˆ

4 x , 190ˆ
5 x  , then by formula (6.1) we will obtain the 

function presented on fig. 6.2.  



 

 Fig. 1.2 Empirical cumulative distribution function for an example 6.2  

 

The basic properties of function *( )F x : 

1. *0 ( ) 1F x   

2. *( )F x - non-decreasing step function. 

3. *( ) 0F x  , for 1x x . 

4. *( ) 1F x  , for nx x . 

The empirical cumulative distribution function is the best estimate of the distribu-

tion law (unbiased, consistent, efficient). The disadvantage of function *( )F x consists 

in its low visualization: it is difficult to determine the distribution law of the random 

variable X visually. 

6.2.2. The interval statistical series 

The probabilities interval statistical series is a next table: 



j Aj Bj hj j *

jp  
*

jf  

1 A1 B1 h1 1 
*

1p  
*

1f  

       

M AM BM hM M *

Mp  
*

Mf  
 

Were j – is the interval number; 

M – is the number of non-overlapping and adjacent to each other intervals, to 

which the range of values  1, nx x  is divided: 

 
 
    

int ,  100,
M

int 2 4 lg ,  100,

n n

n n

 
 

  

 (6.2) 

where int (x) – is the integer part of number x (it is desirable that n will be 

divided without remainder by M); 

Aj, Bj   - are the left and right boundaries of j-interval ( 1j jB A  – intervals adjacent 

to each other), therefore 1 1A x M nB x  

hj – is the length of j- interval j j jh B A  ; 

j  – is the quantity of numbers in the sample, getting to j-interval, 
1

;
M

j

j

n


  

*

jp – is the frequency of hitting to j- interval;
* j
jp

n




*

1

1
m

j

j

p


  

*

jf – is the statistical probability density in j-interval

*
* j j
j

j j

p
f

h nh


  . 

When constructing the interval statistical probabilities array, the following meth-

ods of dividing the value range to intervals are used: 

1) equal-interval, i.e. all intervals are of the same length: 

 1 ,  ;n
j

x x
h h j

M


    (6.3) 

 1 1 ( 1) ,   2,j jA A h x j h j M       ; (6.4) 



2) equiprobable, i.e. interval boundaries are chosen so, that in each interval will 

be the same number of sample values (it is necessary that n  will be divided without re-

mainder by M): 

 
* 1

,j j

n
p j

M M
     ; (6.5) 

 ( 1) ( 1) 1
, 2,

2

j j
j

x x
A j M

   
  . (6.6) 

 

6.2.4. The histogram 

The histogram – is the statistical image of the of probability density plot 
*( )f x

of the random variable, it is constructed by the interval statistical array. The histogram 

represents the set of rectangles constructed, as on the base, on intervals hj  of the     in-

terval statistical array with the height equal to the statistical probability density 
*

jf in 

the corresponding interval. 

For equal-interval method, all histogram rectangles have identical width, and 

for equiprobable method – the identical area. The areas sum of all histogram rectangles 

equals to 1. The advantages of the histogram: simplicity of construction, high visuali-

zation.  

 



Fig. 6.3 Histogram and corresponding to it theoretical  

Probability density 

 

It is easier to determine the distribution law of the random variable X by the histo-

gram shape, than by the plot of the empirical cumulative distribution function *( )F x . 

Let's consider properties of the histogram as )(xf  estimations of theoretical density 

of probability )(xf . 

 

Fig. 6.3 Histogram and corresponding to it theoretical  

probability density 

 

Let lzzz ,...,, 21 –points of splitting of an interval of selective values of a random variable 

X on intervals l , im  –quantity of the sample values which have got to i th interval

),( 1ii zz ,n  –sample size. If maximum from splitting intervals aspires to zero at in-

crease sample size n the histogram converges )(xf  in probability to theoretical proba-

bility density )(xf  and is its consistent estimate, that is for any 0  



0)|)()((|


 
n

xfxfP  . 

     The proof. For empirical cumulative distribution function random variable ξ it is 

possible to write down two conditions: 

0)|)()((| 111




 
n

ii zFzFP 
, 

0)|)()((| 2
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 
n

ii zFzFP 
. 

Then. 
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213   Having 
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 The remark. If splitting intervals do not decrease in process of increase in sam-

ple  size the histogram will not be a well-founded estimation of density of probability. 

 

 

  



Lecture 7 

7.1. Point estimates of numerical characteristics 

Statistical estimate *Q of distribution parameter Q is an approximate value of the 

parameter calculated by the results of the experiment (by the sample). Statistical esti-

mates are divided into point and interval ones.  

The point estimate is the estimate determined by one number. The point estimate 

*Q of parameter Q of random variable X is generally equal to 

 *
1 2( , ,..., )nQ x x x , (7.1) 

where xi – are sample values. 

It is obvious that estimate *Q is a random variable, since it is the function of n-

dimensional random variable (Х1..., Хn), where Хi – is the value of variable Х in i-ex-

periment, and values *Q will change from sample to sample at random. Estimates 

should meet a number of requirements. 

1. The estimate *Q is called consistent, if with increasing of sample n size it 

converges in probability to the value of parameter Q: 

 * *lim( ( ε)) 1, ε 0
p

n n
Q Q P Q Q

 
       . (7.2) 

The consistency is the minimal requirement to estimates. 

2. The consistent estimate *Q is called  unbiased, if its mathematical expectation 

is precisely equal to parameter Q for any sample size: 

 *M[ ] ,Q Q n  . (7.3) 

3. The consistent unbiased estimate *Q is efficient, if its dispersion is minimal 

regarding dispersion of any other estimate of this parameter: 

 
*D minQ  

  . (7.4) 

7.1.1. Mathematical expectation estimate 



Based on Chebychev’s theorem, as a consistent estimate of mathematical expec-

tation, the arithmetic mean values of  sample x  can be used, which are  called sample 

mean: 

 
*

1

1 n

X i

i

m x x
n 

   . (7.5) 

 Let's determine numerical characteristics of estimate x . 

1 1 1

1 1 1
[ ] [ ] [ ]

n n n

i i X X

i i i

M x M X M X m m
n n n  

      , 

i.e. the estimate is unbiased. 

 2 2
1 1 1

1 1 1 1
[ ] [ ] [ ]

n n n

i i X X

i i i

D x D X D X D D
n n n n  

      . (7.6) 

 Estimate (14.5) is efficient, i.e. its dispersion is minimum, if variable X is dis-

tributed under the normal law. 

7.1.2. The ordinary moment estimate  

The consistent ordinary moment estimate of k-order based on Chebychev’s the-

orem is determined by equation 

  *

1

1
( ) .

n
k

k i

i

x x
n




   (7.7) 

 

7.1.3. The dispersion estimate 

As the dispersion consistent estimate, the deviations squares arithmetic mean of 

the sample values from the sample mean can be used: 

  
22 2 2

1 1

1 1
( )

n n

i i

i i

S x x x x
n n 

      . (7.8) 

 Let's determine mathematical expectation of estimate S2. Since the dispersion 

does not depend on the choice of the coordinate origin, we will choose it at point mX, 

i.e. we  pass to centered variables: 
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   
 

 Covariance 0ijK  , since experiments and consequently, and Хi (the value of var-

iable Х in i-experiment) are independent. Thus, variable 
2S is the biased estimate of  

dispersion, and the unbiased consistent estimate of dispersion equals: 

  
22 2 2 2

0

1 1

1 1
.

1 1 1 1

n n

i i

i i

n n
S S x x x x

n n n n 

     
   

   (7.9) 

 The variable dispersion 
2

0S is equal to 
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0
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3
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nn

n

n
SD




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
. (7.10) 

For the normal distribution law of variable X formula (14.10) will be of the form 

 
22

0
)1(

2
][ D

n
SD


 , (7.11) 

for the uniform distribution law – 

 
2 20,8 1,2

[ ]
( 1)

X

n
D S D

n n





. (7.12) 

The consistent unbiased estimate of RMSD is determined by equation: 

 2

0 0 .S S  (7.13) 

If sample is taken from normal distribution it is possible to show, as 2

0S  will be asymp-

totic effective estimations of a dispersion 
2 . 

 

7.1.4. The central moment estimate 

The consistent estimate of the central  moment of k-order equals: 

  *

1

1
( ) .

n
k

k i

i

x x x
n




    (7.14) 



7.1.5. The probability estimate 

Based on Bernoulli theorem, the unbiased consistent and efficient probability 

estimate of the random event A in the scheme of independent experiments is equal to 

the frequency of this event: 

 
*( )

m
p A

n
 , (7.15) 

where m – is the number of experiments, in which event A occurred; 

n – is the number of the conducted experiments. 

Numerical characteristics of the probability estimate 
* *( )p A p are equal to: 

 
* * (1 )

M[ ] ( ) ,  D[ ]
p p

p p A p p
n


   . (7.16) 

  



Lecture 8 

 

8.1. The distribution parameters estimate 

 

To calculate the distribution parameters estimates, most often method of mo-

ments and method of maximum likelihood are used. 

Method of moments. Let there is sample {x
1
..., x

n
}of independent random vari-

able values with the known distribution law 1( , ,..., )mf x Q Q   and m unknown parame-

ters 1,..., mQ Q . It is necessary to calculate estimates 
* *

1 ,..., mQ Q of parameters 1,..., mQ Q . 

The calculations sequence is the following:  

1. To obtain analytical expressions m of ordinary and/or central theoretical mo-

ments: 

 
 

1

1

( , ,.., ) ,

( , ,.., ) .

k

k m

k

k m x

x Q Q M X

x Q Q M X m





   

  
 

 (8.1) 

2. To determine m corresponding estimates of ordinary
* ( )k x and/or central 

*( )k x moments under formulas (7.7, 7.14). 

3. To set up and solve with respect to unknown parameters 1,..., mQ Q  the system 

from m equations:  

*

1

*

1

( , ,.., ) ( ),

( , ,..., ) ( )

k m k

k m k

x Q Q x

x Q Q x

 

 





, 

in which theoretical moments are equated to point estimates of the corresponding mo-

ments. Each equation looks like 
*( ) ( )k kx x  or

*( ) ( )k kx x  . Solving this system, 

we obtain estimates
* *

1 ,..., mQ Q of unknown parameters. 

Note. The part of the equations can contain ordinary moments, and the rest – 

central ones. 



Example 8.1.Find the estimates of parameters a and
2

 of the normal general popula-

tion ),( 2aN  by the method of moments. 

Problem solution(Answer). Theoretical moments are equal aXE  )(1
2

2 )(   XD

. By equating them to the corresponding sample moments, as estimates, we obtain the 

known to us the sample mean and sample dispersion: 

xx
n
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n

i
i  
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, 
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1
sxx

n

n

i

i 
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 





. 

 

Example 8.2.Find the estimates of parameters a,  b of the uniform distribution ),( baU

by the method of moments. 

Solution. Theoretical moments of the uniform in distribution ),( baU are equal to

2
)(1

ba
XE




12

)(
)(

2

2

ab
XD


 . By equating them to the corresponding sample mo-

ments, we obtain the system of the equations 

x
ba




2 , 

2
2

12

)(
s

ab



. 

Rewriting this system in the form 

xab 2 , 

sab 32 , 

We obtain estimates 

sxa 3


, sxb 3


. 

 

 



 

Method of maximum likelihood. According to the given method, estimates

* *

1 ,..., mQ Q are obtained from the condition of the maximum for parameters 1,..., mQ Q of 

the positive likelihood function 1 1( ,... , ,..., )n mL x x Q Q .  

If random variable X is continuous, and values xi are independent, then 

1 1 1

1

( ,... , ,..., ) ( , ,..., )
n

n m i n

i

L x x Q Q f x Q Q


  

If the random variable X is discrete and assumes independent values xi with probabili-

ties 1( ) ( , ,..., ),i i mp X x p x Q Q  then the likelihood function is equal to 

1 1 1

1

( ,... , ,..., ) ( , ,..., )
n

n m i m

i

L x x Q Q p x Q Q


  

According to this method, the system of equations can be written in two forms:

  

 
1 1( ,... , ,..., )

0,  1,2,...,n m

j

L x x Q Q
j m

Q


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
, (8.2) 

Often this system is simplified by means of the following technique. Since any function 

and its logarithm reach the extremum at the same argument values, then often not the 

likelihood function is maximized, but its natural logarithm: 

 
 1 1ln ( ,... , ,..., )

0,  1,2,..., .
n m

j

L x x Q Q
j m

Q


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
 (8.3) 

If  one takes into account, that the likelihood function is represented in the form of 

the product, then its logarithm is represented in the form of the sum 





n

i

mim QQxfQQL
1

11 ),...,,(ln),...,(ln , 

and the system of the equations will be transformed to the form 

0),...,,(ln 1

1




mi

n

i j

QQxf
Q




 , m,j 1 .   (8.4) 

 



Solving this system, we obtain estimates
* *

1 ,..., mQ Q of unknown parameters. 

Example 8.3.Find estimates of parameters a and 
2

 of the normal general population

),( 2aN  by the method of maximum likelihood. 

Solution. The general population probability density is known accurate within two pa-

rameters a  ,
2 : 

2
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eaxf
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     Let us maximize the logarithmic likelihood function, for what we find 
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We find partial derivatives for the estimated parameters 
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To obtain estimates, it is required to solve the system of equations (2.3) which looks 

as follows 



























n

i

i

n

i

i

ax

ax

1
4

22

1
2

.0
2

)(

,0







 

From the first equation we find 





n

i

i xx
n

a
1

1
. 

Substituting x for a  to the second equation, we obtain 
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1
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sxx
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


. 

 We see that the maximum plausible (likely) estimate of parameters a  and 
2 of the 

normal distribution are sample average x  and the sample dispersion
2s .These esti-

mates not differ from the estimates obtained in Example 8.1by the method of moments. 

     Let us pay attention to the estimate structure of the parameter a : 





n

i

i

n

i

i x
n

x
n

a
11

11
. 

This is the linear function of the sample values taken with identical weight factors
n

1 . 

Such structure of the estimate is quite clear, since all sample values have the same 

dispersion, and there is no reason for weighting to them various weight factors. 

Example 8.4.Find the estimates of parameters a, b of the uniform distribution ),( baU by 

the method of maximum likelihood . 

Solution. Since the probability density of the uniform distribution ),( baU looks as fol-

lows 


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




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,bx,ax,

,bxa,
ab)x(f
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then the likelihood function is equal to 





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
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n
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1
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1

 

Since ab  , and the likelihood function increases with increasing ofb and decreasing 

ofa, then with the account for the restrictions in the likelihood function expression, we 

obtain the following estimates: 

)x,...,x,xmin(xa n)( 211 


, )x,...,x,xmax(xb n)n( 21


. 

These estimates differ from the estimates obtained in Example 8.2 by the method of 

moments. 



8.2 Parameter estimation by the results of unequal measurements 

 

     In a number of practical problems, it is required to solve the following problem. A 

certain physical value(for example, voltage ), is measured by measuring devices having 

various accuracy of measurement. It is required to define the true voltage value by the 

results of these measurements. 

Since more often the errors of metering devices measurements are considered to be 

distributed by the normal law, then the given problem can be formulated as follows. 

The parameter a is the average value n of normal general populations with the proba-

bility density 
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There is the sample  nxxx ,...,, 21  from these populations, containing one sample value 

from each population. It is required to find the estimate a


 of the parameter a  according 

to the available data. 

     For the solution of the given problem can be used the method of maximum likeli-

hood. The logarithmic likelihood function for one sample value ix looks as follows 
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Hence we obtain the derivative 
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After transforming this equation to the form 
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weobtain the estimate 
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This is also a linear combination of sample values, as in example 8.3 for uniformly 

precise measurements, but with different weights of 
2

i . In this case, the weight of 

observation ix  is inversely proportional to the observation dispersion 
2
i . At identical 

dispersions of observations, such estimate is reduced to the estimate, obtained in ex-

ample 8.3. 

  



Lecture 9 

9.1 Interval estimate of numerical characteristics 

A confidence interval for a certain parameter Q is the interval );( UL QQ covering 

the value of parameter Q with probabilityγ: 

 )( UL QQQp .                                             (9.1) 

The value γ is called the confidence probability, 

);( UL QQ , –are the lower and upper confidence limits, respectively,  

)( LU QQ  –is the length of the confidence interval.  

The confidence probability is selected close to 1 from the set of numbers: 0,9; 

0,95; 0,975; 0,99. The confidence interval for parameter Q is also called the interval 

estimate of this parameter. 

     The problem of constructing the confidence interval is formulated as follows. The 

probability density of the general population is known within the parameter Q, that is,

),( Qxf is known. It is required to find the interval );( UL QQ of the form (9.1) by the 

sample nxxx ,...,, 21  from this this population. 

Since two limits of the confidence interval are determined from one equation 

(9.1),then there is an infinite set of intervals, satisfying this equation. 

To solve the unambiguity problem, from the equation (9.1) we pass to two equations: 
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where
  121 . 

     The confidence interval is called symmetric, if 
2

1
21





 .  

The symmetric interval is constructed on the basis of the following system of the equa-

tions: 
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Usually, constructing the confidence interval is imply constructing symmetric confi-

dence interval. 

 

Fig.. 9.1 Illustration of the symmetric confidence interval construction technique 

 

For constructing the symmetric confidence interval for unknown parameter Q, 

the point estimate Q*is usually used. It is obvious, that for constructing the confidence 

interval the distribution law )( *Qf of random variable 
*Q should be known. The diffi-

culty consists in the fact that the distribution law of point estimate 
*Q depends on the 

distribution law of variable X and, hence, on its unknown parameters (in particular, 

also on parameter Q itself). To solve this problem, we use the fact, that variable 
*Q

represents, as a rule, the sum of n independent equally distributed random variables 



and, according to the central limit theorem, at large enough sample size n ( 10...20n 

), its distribution law can be considered asymptotically normal. In this case, the confi-

dence interval based on law normalization of the point estimate
*Q  (

),()( 2* aNQf  , where ][, *2* QDQa   ), will look like: 

* * * *( ) ; ,I Q Q z D Q Q z D Q  
             

 

where– z  is the argument value of Laplace function, arg ( )z   i.e. ( )z   (see 

table 3.1, Lecture 3).

 
If the random variable distribution law is normal and this is known before the 

experiment, then for constructing confidence intervals for mathematical expectation 

and dispersion, exact formulas exist, which can be used at any sample size. 

 

9.2 The confidence interval for mathematical expectation 

The interval ( )XI m for mathematical expectation of random variable X with un-

known distribution law with a large enough sample size n ( 10...20n  )looks like 

 
0 0( ) ; .X

S S
I m x z x z

n n
  

 
   
 

 (9.4) 

If the random variable X is distributed under the normal law with parameters mx 

and x, then variable 
0

( )Xx m n
T

S


 is distributed under the Student’s law 1( 1)T n

with (n - 1) degree of freedom. 

Student’s distribution with k degrees of freedom has the following probability 

density: 
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 (9.5) 



where
1

0

( ) tt e dt


    –is gamma function. For 

 

In this case, the exact confidence interval with reliability  for mathematical ex-

pectation of the normal random variable has the form: 
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 (9.6) 

where  the , 1nt  – is the value taken from the Student’s distribution table(see table 3.3, 

Lecture 3). 
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9.3 The confidence interval for dispersion 

The interval ( )XI D for dispersion of the random variable X with unknown dis-

tribution law for a large enough sample size n ( 10...20n  ) looks like 

 2 2 2 2
0 0 0 0

2 2
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1 1
XI D S z S S z S

n n
  

 
   

  
. (9.7) 

If the random variable X is distributed under the normal law with parameters mx 

and x , then variable

2

0

2

( 1)

X

n S
v




  is distributed by the 

2 (Сhi-square) law 1( 1)H n



with (n–1) degree of freedom, and the exact confidence interval with reliability for 

dispersion has the form 
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 (9.8) 

where
2 2

1 1
, 1 , 1

2 2

,
n n

   
 

– are the values taken from the table of distribution
2 (see table 

3.2, Lecture 3). 

Formulas (9.6), (9.8) can be used at any sample size n (for example, n can be 

less then 10), since these intervals I are constructed based on the knowledge of exact 

distribution laws of the variables relating Q and
*Q . Besides, if the random variable X 

is distributed under the normal law and its dispersion 
2

X is known, then the exact in-

terval I for mathematical expectation for any sample size n is determined by equation 

(9.4), having replaced in it the estimate of RMSD 0S by its exact value X . 

 

9.4Theconfidence interval for probability 

The interval I for probability of event A in the scheme of independent Bernoulli 

experiments looks like 

 

* * * *
* *(1 ) (1 )
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p z p A p z
n n

 

 
      , (9.10) 

where
*p – is the frequency of occurrence of event Ain n experiments

* *( )
m

p p A
n

  ; 

m – is the number of experiments, in which event A occurred; 

n – is the number of conducted experiments; 

z  –is the argument value of Laplace function, arg ( )z   i.e. ( )z   (see 

table 3.1, Lecture 3).  



Lecture 10 

10.1 Statistical check of hypotheses. Classification of hypotheses 

Statistical hypothesis is any consistent set of assertions {Н
0
, Н

1
, H

k
} concern-

ing the random variable distribution properties. Any of assertions H
i
, i=1, …, k is called 

the hypothesis alternative. The most simple hypothesis is two-alternative: {Н
0
, Н

1
}. In 

this case, alternative Н
0
  is called a null hypothesis, and Н

1 – a competing hypothesis. 

To test hypothesis – means to make the reasonable decision about which of the 

alternatives is true by the sample  nxxx ,...,, 21  from the general population. 

If as the result of the hypothesis testing any of the alternatives is accepted, other 

alternatives are rejected, that is, are considered false. 

The hypothesis is tested, based on the so-called hypothesis test criterion. The 

criterion is the rule, allowing to accept or to reject this or that alternative by the avail-

able sample. Usually they accept or reject the null hypothesis Н
0
. 

The alternative H
i
 is called parametric, if it specifies the value of the certain 

distribution parameter . Otherwise, it is called non-parametric. 

The multi-alternative hypothesis H is called parametric, if all its alternatives are 

parametric, and non-parametric, if at least one alternative is non-parametric. 

The alternative H
i
 is called simple, if it unambiguously determines the general 

population distribution, and otherwise, it is called complex. 

The multi-alternative hypothesis H is called simple, if all its alternatives are sim-

ple, and complex, if at least one of the alternatives is complex. 

     Let us present examples of hypotheses with their classification. Let the sample is 

taken from the normal population ),( 2aN and  
2
010 ,, aa  – are certain fixed num-

bers. We will formulate the following hypotheses: 

 1.  }:;:{ 1100 aaHaaH  . 



This is a two-alternative parametric simple hypothesis about parameter a  of the normal 

general population. 

 2.  }:;:{ 1100 aaHaaH  . 

This is a two-alternative parametric complex hypothesis, since  1H  –is complex. 

 3.  }:;:{ 2
0

2
1

2
0

2
0   HH . 

This is a two-alternative parametric complex hypothesis about parameter  2 of the 

normal general population. 

 Let  )(0 xf – is certain completely known probability density and  
)(xf –is the 

probability density of the general population. The hypothesis of the form 

 4.  
)}()(:);()(:{ 0100 xfxfHxfxfH    

is a two-alternative non-parametric complex hypothesis – the so-called hypothesis 

about the distribution law. Here the assertion is checked, that our sample is taken from 

distribution )(0 xf . 

10.2 Significance criterion 

     Let the two-alternative complex hypothesis },{ 10 HH  is under the test, where 0H – 

is a simple hypothesis, and  1H  –is complex. Such hypothesis is tested by means of 

the so-called significance criterion.      

 On the basis of the significance criterion there is a certain scalar statistics 

),...,( 1 nxxgg  , which represents deviation of the empirical (sample) data from the 

hypothetical ones. The significance criterion allows to establish, whether the deviation 

of the empirical data from the hypothetical is significant, that is, whether the value of 

the statistics g is significant. From here is the criterion name. 

The error of the first kind (alpha error) means that hypothesis H
0
 will be rejected, 

if it is true ("target drop-out"). The probability to make the error of the first kind is 

designated   and is called the significance level. In practice, most often significance 



level  is chosen from the following set of small numbers: 0,01} 0,025; 0,05; {0,1; . The event 

with such a probability, can be considered almost impossible, that is, not appearing as 

the result of one experiment. 

The error of the second kind (beta error) means that hypothesis H
0
 is accepted, 

if it is false ("false alarm"). The probability of this kind of error is designated . The 

probability not to commit the error of the second sort (1- ) is called the power of test. 

To find the power of test, it is necessary to know the criterion probability density of 

the alternative hypothesis. 

     Let  
)(xf g  – is the probability density of statistics g . This probability density is 

assumed known (provided that 0H  is true). The significance criterion looks as follows 

  )|(| 2/ggP ,                                                  (10.1) 

or 

  )( ggP ,                                                        (10.2) 

or 

   )gg(P 1 ,                                                      (10.3) 

where  – is significance level; 

  2/g g  1g  are significance limits, or critical values. 

The areas determined by conditions 2/|| gg  , or gg  , or  1gg  are called  criti-

cal areas. These areas are denoted in Fig. 10.1 – 10.3 by hatching.  

Let us note, that since we use statistics distribution g provided that 0H is true, then 

represents the probability of deviation of the true hypothesis  0H   and is also called the 

error probability of 1st kind. The probability of acceptance of the true hypothesis 0H

is equal to )1(  . 



Criterion (5.1) is called bilateral or criterion with bilateral critical area. Criterion 

(5.2) – right-sided. Criterion (5.3) – left-sided. The hypothesis is tested by the follow-

ing way. The significance level  is chosen. By distribution tables  of statistics g , the 

significance limit 2/g , or g 1g is selected, depending on the criterion kind. Then 

by the available sample and the formula for statistics g  the empirical value of the 

statistics эg is calculated. If  2/|| gg э   for bilateral criterion (5.1), or for gg э   for 

right-sided criterion (5.2), or for  1gg э  for left-sided criterion (5.3) , then the tested 

hypothesis 0H is rejected.  

 

Fig. 10.1 Critical areas for bilateral significance criterion 

 



 

Fig. 10.2 Critical area for right-sided significance criterion 

 

Fig. 10.3 Critical area for left-sided significance criterion 

 



In other words, if the empirical value of statistics эg gets to the critical area, then 

the hypothesis under test 0H is rejected.  

Hypothesis 0H  is rejected due to the fact, that there is a contradiction between  hy-

pothetical and empirical data, which was revealed by the fact, that there was an 

event which would not have resulted from the single experiment. 

 

10.3. Hypothesis testing about probabilities equality 

Let two series of experiments were conducted, consisting of n1 and n2 experi-

ments, respectively. In each of them, the occurrence of the same event A was registered. 

In the first series event A appeared in k1 experiments, in the second — in k2 experi-

ments, therefore, the frequency of event A in the first series has turned out to be higher, 

than in the second:
* *1 2
1 2

1 2

k k
p p

n n
   . The difference between two frequencies 

was equal to 

 
* *

1 2U p p  . (10.4) 

Question: is this discrepancy significant or not significant? Whether it specifies 

that in the first experiments series event A was really more probable, than in the second, 

or discrepancy between the frequencies should be considered random? 

We put forward two-alternative hypothesis {Н
0
, Н

1
}, where: 

Н
0
 – distinctions in probabilities do not exist, i.e. both series of experiments are 

conducted in identical conditions, and discrepancy U is due to random reasons,  

Н
1
 – distinction in probabilities exists, i.e. both series of experiments are made 

not in identical conditions. 

In this, case, null-hypothesis H0  consists in that both series of experiments are 

homogeneous, and that probability р of occurrence of event A in them is the same, 

approximately equal to the frequency, which will be obtained, if both series are mixed 



into one:
* 1 2

1 2

k k
p p

n n


 


. 

At large enough n1 and n2 , each of random variables 
*

1p and 
*

2p is distributed 

almost normally, with the same mathematical expectation
*m p p  . As for disper-

sions D1 and D2 in the first and in the second series, - they are different and equal, 

respectively, (14.16) 

* * * *

1 1 2 2
1 2

1 2

(1 ) (1 )
,  

p p p p
D D

n n

 
  . 

As a criterion, we will use random variable 
* *

1 2U p p  , which also has approx-

imately normal distribution with mathematical expectation  0Um  and dispersion 

* * * *

1 1 2 2
1 2

1 2

(1 ) (1 )
U

p p p p
D D D

n n

 
    , Whence

* * * *

1 1 2 2

1 2

(1 ) (1 )
U U

p p p p
D

n n


 
   . 

We determine critical point U for the given significance level    form the equa-

tion: 

( ) 0.5 ( )
U

U
p U U 




    , I.e arg (0.5 )UU      . 

If the value calculated by equation (15.1) is larger than the critical value, i.e. 

U U  , then hypothesis H0 is rejected, otherwise there is no reason to reject it. 

  



Lecture 11 

 

11.1. Hypothesis test about the distribution law. Fitting criteria 

Let it is required to test the hypothesis that the general population has the specified 

distribution. The criteria for testing such a hypothesis have obtained the name of the 

fitting criterion. 

The hypothesis about the distribution law is put forward and tested in the fol-

lowing way. 

1. Construct the empirical distribution function plot *( )F x by the variational se-

ries, and histograms by the interval statistical arrays (equal-interval and/or equiproba-

ble). 

2. Based on the graphs forms, put forward a two-alternative hypothesis about the 

intended (hypothetical) distribution law: 

0H  –  variable X is distributed under a certain law: 

                0 0( )  ( ),                    ( )  ( );f x f x F x F x   

1H  – variable X is not distributed under a certain law:  

               0 0( )  ( ),                    ( )  ( ),f x f x F x F x   

where  0 0( ),  ( )f x F x  – is the density and cumulative distribution function of the hypo-

thetical distribution law.  

The graph of the empirical cumulative distribution function 
*( )F x should be sim-

ilar to the graph of the cumulative distribution function 0( )F x of the hypothetical law, 

and the histogram – to the density graph of the hypothetical distribution 0( )f x . 

3. Calculate point estimates of mathematical expectation x and dispersion 
2
0S , 

and, using the method of moments or method of maximum likelihood, determine the 

estimates of unknown parameters 
* *

1 ,..., mQ Q of the hypothetical distribution law, where 

2s   –  is the number of unknown parameters of the hypothetical distribution law.  



The estimates of unknown parameters a, b of the uniform distribution can be 

determined by the formulas 

 * *
0 03 , 3a x S b x S        

or 

 * *
1, na x b x     

where 1,  nx x  – are the first and last values of the variational series, respectively. 

The estimate of unknown parameter  of the exponential distribution can be 

determined by equation 

 * 1
.

x
     

Estimates of unknown parameters , σm of the normal distribution can be  deter-

mined by formulas: 

 * *
0.,  σm x S    

4. Test the hypothesis about the intended distribution law by means of fitting 

criterion. 

 

11.2. Pirson criterion 

Pirson fitting criterion (
2 ) is one of the most frequently used criteria. The hy-

pothesis testing algorithm about the distribution law is the following. 

1. Calculate the value of criterion 
2  by the interval statistical array (equal-in-

terval or equiprobable)  by the equation: 

 
   

2 2*

2

1 1

M M
j j j j

j jj j

p p np
n

p np




 

 
   , (15.2) 

 

where  n  – is the sample size; 

M – is the number of intervals of the interval statistical array; 



*
jp  – is the hitting frequency to j-interval; 

j  – is the quantity of numbers in the sample, hitting to j-interval; 

 pj – theoretical probability of the  random variable hitting to j-interval, provided 

that hypothesis 0H is true: 

 0 0 0( ) ( ) ( ) ( )

j

j

B

j j j j j

A

p p A X B f x dx F B F A      , (15.3) 

where 0( )f x ,  0( )F x  – is the density and cumulative distribution function of the hypo-

thetical distribution law. 

When calculating p1 and p
M

 as extreme boundaries of first and last intervals A1, 

BM , theoretical boundaries of the hypothetical distribution law should be used. 

The variable 
2 is distributed under the law, which is called distribution

2 . 

The given distribution does not depend on the distribution law of variable X, but de-

pends on parameter k , which is called the number of degrees of freedom: 
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 (15.4) 

where  
1

0

( ) tt e dt


     – is gamma function. 

 Since the analytical expression of the probability density 
2 is rather compli-

cated, in practice the table of values 2

,k  , calculated from equation
2 2

,( )kp      

for various values k , is used.  
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2. From the distribution table of 
2  the value 2

,k  is chosen, where  – is the 

set significance level ( = 0,05 or  = 0,01), and k – is the number of degrees of free-

dom, which is determined by equation  

  1  k M s   , 

where M – is the number of summands in formula (15.2), i.e. the number of intervals 

of the interval statistical array; 

s – is the number of unknown parameters of the hypothetical distribution law, the 

estimate of which  were determined by the original sample. 

3. If the value 
2 calculated by equation (15.2) is larger than the critical value, i.e. 

2 2

,k  , then hypothesis H
0
 is rejected, otherwise there is no reason to reject it. 

 

11.3. Kolmogorov criterion 

The hypothesis is tested 

)()(: 00 xFxFH   

against the alternative 

)()(: 01 xFxFH  , 

where F(x) – is cumulative distribution function  of the general population, F0(x) – is 

the continuous hypothetical distribution function  (completely known function). 

 

The testing algorithm for the hypothesis about the distribution law by means of 

Kolmogorov fitting criterion is the following. 

1. Calculate the Kolmogorov criterion value, based on the empirical cumulative 

distribution function 
*( )F x  



 ,n Z    (15.5) 

wheren   – is the sample size; 

  Z – is the maximum deviation module of the empirical cumulative distribution 

function *( )F x  from the hypothetical distribution function 0( )F x
, deter-

mined by all n  of values xi of the original sample *
0

1
max ( ) ( )

n

i i
i

Z F x F x


 

.  

The value Z can be determined with sufficient accuracy by graphs of functions 

*( )F x  and 0( )F x
, which stand in one coordinate system.  

The variable  is distributed under Kolmogorov's law, which does not depend on 

the distribution law of variable X: 

 
2 22( ) ( 1)k k

k

F e 






  . (15.6) 

Since the analytical expression of the cumulative distribution function ( )F  is 

rather complicated, in practice they use the table of values of  calculated from the 

equation (0 )p      . 

 

 

 

 

 

 

 

2. Choose the critical value  , 1   , where  – is the set significance level 

( = 0,05 or   = 0,01) from the Kolmogorov distribution table. 

 

 

f  (x)







 



Kolmogorov distribution table 

 

γ(0 λ λ ) γp     



  

0,50 0,0361 

0,54 0,0675 

0,58 0,1104 

0,62 0,1632 

0,66 0,2236 

0,70 0,2888 

0,74 0,3560 

0,78 0,4230 

0,82 0,4880 

0,86 0,5497 

0,90 0,6073 

0,94 0,6601 

0,98 0,7079 

1,02 0,7500 

1,06 0,7889 

1,10 0,8223 

1,14 0,8514 

1,18 0,8765 

1,22 0,8981 

1,26 0,9164 

1,30 0,9319 

1,34 0,9449 

1,38 0,9557 

1,42 0,9646 

1,46 0,9718 

1,50 0,9778 

1,54 0,9826 

1,58 0,9864 

1,62 0,9895 

1,66 0,9918 

1,70 0,9938 

1,74 0,9953 

1,78 0,9965 

1,82 0,9973 

1,86 0,9980 

1,90 0,9985 

1,94 0,9989 

1,98 0,9992 

 

 

3. If the value  calculated at step 1 is larger than the critical value, i.e. >  , 

then hypothesis is rejected, otherwise there is no reason to reject it. 0H



The advantages of Kolmogorov criterion compared to criterion
2 , are the pos-

sibility to apply it for very small sample sizes (n <20), higher "sensitivity", and there-

fore, less laborious calculations. The disadvantage is that empirical cumulative distri-

bution function F * (x) should be constructed by ungrouped sampled data, what is in-

convenient at large sample sizes. Besides, it should be noted, that Kolmogorov criterion 

can be applied only in the case when hypothetical distribution is completely known in 

advance from any theoretical reasons i.e. when not only the kind of cumulative distri-

bution function F
0
 (x) is known, but also all parameters comprised by it 1,..., mQ Q . Such 

case rather seldom occur in practice. Usually, only the general form of function F
0
 (x) 

is known from theoretical considerations, and the numerical parameters included into 

it are determined by the given statistical material. When applying criterion  
2 , this 

circumstance is taken into account by corresponding decreasing of the number of de-

grees of freedom of k distribution. Kolmogorov's criterion does not provide this match-

ing. If this criterion is still applied in those cases when parameters of hypothetical dis-

tribution are determined by statistical data, it gives knowingly low estimated  values; 

therefore we in some cases, we risk to accept hypothetical distribution as a plausible 

hypothesis, which actually is ill-agreed with experimental data. 

  



Lecture 12 

 

12.1 Fitting criterion Mises-Smirnov criterion 

 

     The two-alternative hypothesis is under test 

 )x(F)x(F:H);x(F)x(F:H 0100   . 

The quantitative measure of the deviation of the empirical data from the hypothetical 

is quantity  
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



  )x(dF)x(F)x(F 0

2

0
2


,                                    (12.1) 

where )x(F
 – is the empirical distribution function . We obtain the expression for 

the numerical calculation of statistics 
2  in the assumption that the hypothetical dis-

tribution function  )x(F0 is continuous and derivative )x(F0  exists (the probability 

density). Taking into account expression for the empirical distribution function, we 

will break the real straight line into the intervals 

)x,( )(1
, 

)x,x[ )()( 21 , …,
)x,x[ )n()n( 1 ),x[ )n( 

 

where )(kx
– is the order statistics, and we calculate integral (5.6) by these intervals. 

We obtain 
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It is easy to notice that the first summand in the last expression can be included into 

the first sum, and the last summand – into the second sum, that is to write down 
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If to introduce a new variable of summation 1 qk  in the first sum, we will obtain 
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Having denoted
n/k)x(FV )k(  0 , we will have 
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Supplementing the expression under the sum sign to the full square byV , we will ob-

tain 
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then we finally have 
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The statistics of criterion 
2 looks as follows 
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For statistics z  (5.7) at n  the limiting distribution exists for which Tables of per-

centage deviations (Tab. 5.2) are made. The criterion 
2 is right-sided: 

  )( zzP . 

 

Table 12.1. 

Percentage deviations of the statistics limiting distribution  z ,  

  )( zzP  

  0.01 0.02 0.03 0.04 0.05 

z  0.74 0.62 0.55 0.50 0.46 

 

 

12.2 Neumann-Pirsona criterion 

 

     Let us consider the two-alternative hypothesis }H,H{ 10 . Let S – is the sample 

space )x,...,x,x(X n21 . The test of the formulated hypothesis is reduced to the sam-

ple space S partition to two areas 0G and 1G . If the concrete sample )x,...,x,x(X n21

gets to the area 0G , the hypothesis 0H is accepted, and otherwise, the hypothesis 1H

is accepted. When making the decision, the following errors are possible: the error of 

first kind, when the hypothesis 0H  is true, but is rejected, and the error of second kind, 

when the hypothesis 0H is not true, but is accepted. 

 



 

Fig. 12.1 Illustration of probabilities of errors of first and second kind 

 

     The problem of testing the two-alternative hypothesis is actual in the radar-location 

at detecting of air targets when the hypothesis 0H – the target is present, and the hy-

pothesis 1H – the target is absent. In this case the error of first kind is called the error 

of false clear (target drop out), and the error of second kind – the false alarm error. 

     Let  and  – are probabilities of errors of first and second kind, respectively, and

)H/X(f 0 ,  )H/X(f 1  – are the sample probability density, provided the condition 

of the validity of hypotheses 0H and 1H , respectively. Then these probabilities are de-

termined by formulas 
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dX)H/X(f)H/GX(P

. 



The quantity  1 is called the strength of criterion, corresponding to partition of 

0G 1G . It represents the probability to reject the false hypothesis and is determined by 

the formula 



1

1111
G

dX)H/X(f)H/GX(P

. 

The illustration of probabilities of errors of first and second kind and the strength of 

criterion is presented in Fig. 12.1. 

 

When testing the two-alternative hypothesis by the significance criterion, we specify 

the small error probability of first kind (the significance value , see section 5.2), and 

we do not control the error probability of second kind  . At the same time, both errors 

of first and second kind are undesirable. Neumann and Pirson have offered the ap-

proach to hypothesis testing, according to which the certain small error probability of 

the first kind is specified, and the error probability of second kind    is minimized (the 

strength of criterion  1   is maximized). At such approach, the following opti-

mizing problem is solved: 

constdX)H/X(f
G

 

1

0

, 

maxdX)H/X(f
G

 
1

1

. 

The criterion of hypothesis testing obtained as the result of this problem solving, is 

called (and is) the most powerful in comparison with other criteria.  

 In  Neumann-Pirson  lemma it is proved, that the optimum area 1G is the area, for 

which 

)}H/X(kf)H/X(f:X{ 01  ,                                   (12.3) 

   Criterion (5.14) we can write down in the form of the significance criterion 

 )H/k)X(l(P 0 ,                                        (12.4) 

where the statistics )X(l is determined by the expression 



)H/X(f

)H/X(f
)X(l

0

1
 

and is called the likelihood ratio. Criterion (5.15) is called  the Neumann-Pirson crite-

rion for testing the two-alternative simple hypothesis. For hypothesis test it is necessary 

to obtain statistics distribution )X(l  provided the condition of the validity of hypoth-

esis 0H and to find the significance limit k  for this statistics by the Table of percentage 

deviations of statistics distribution  )X(l  at the significance level  . If the empirical 

value )X(lэ of the statistics satisfies the inequality k)X(lэ  , then  hypothesis 0H is 

rejected. 

     Instead of the likelihood ratio it is possible to use the logarithmic likelihood ratio, 

since if  )H/k)X(l(P 0 ,  then  )H/k)X(l(lnP 0 , where k  –is a certain 

new threshold. 

     Example 5.1. We will test the hypothesis }aa:H;aa:H{ 1100  about  the 

mathematical expectation a  of the normal general population ),a(N 2 at the known 

dispersion 
2 by the Neumann-Pirson criterion, where 0a , 1a  – are certain numbers. 

We will use the logarithmic relation of credibility. Since 
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(see example 2.3 of section 2.2), then 
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where nxx
n

i

i /)(
1




 .  

Since the statistics x under the condition of validity of hypothesis 0H has normal dis-

tribution 
)

n
,a(N

2

0



 (see section (3.4)), then to determine the significance limit k it 

is required to use the Tables of this distribution. Since the Tables are usually made for 

distribution ),(N 10 , it is expedient to pass to the statistics 
n

ax
u



0


having dis-

tribution ),(N 10  , and to use the criterion 

 )( hxP , 

where  




u

n
ah  0

, 

 u  – is the 100 percent deviation of distribution ( ),(N 10 ). 

If the empirical value of statistics x satisfies to the inequality hx  , then  hypothesis 

0H is rejected. 



Lecture 13 

 

13.1 Hypothesis test about the mathematical expectation at the known dispersion 

 

     There is the sample nxxx ,...,, 21  from the normal distribution ),( 2aN  and the dis-

persion 
2  is known, and it is required to test the hypothesis about the mathematical 

expectation 00 : aaH  , where 0a  – is a known number. 

     For the hypothesis testing the statistics is used 

n
ax

u





. 

If 0H  is true, that is 0aa  , then )1,0(Nu . For testing the hypothesis of the kind 

}:;:{ 0100 aaHaaH   the bilateral significance test is used   )|(| 2/uuP  

(Fig. 13.1),  

 

Fig. 13.1 Critical areas for bilateral significance criterion 

 



for the hypotheses }:;:{ 0100 aaHaaH   – the right-sided criterion   )( uuP  

(Fig. 13.2),  

  

Fig. 12.2 Critical area for right-sided significance criterion 

 

for the hypotheses }:;:{ 0100 aaHaaH   – the left-sided criterion 

   )uu(P 1  (Fig. 13.3). 



 

Fig. 13.3 Critical area for left-sided significance criterion 

 

 Here 2/u , u , 1u  – 2
100



-, 100 -, )( 1100 - are percentage distribution devi-

ations  )1,0(N , respectively (Table 13.1). 

There are table satisfying to equality   )uu(P , 

Table 13.1 

Percentage deviations of normal distribution )1,0(N ,  

  0,0010 0,005 0,010 0,015 0,020 0,030 0,040 0,050 

u  3,0902 2,5758 2,3264 2,1701 2,0938 1,8808 1,7507 1,6449 

 

 

 



13.2 Hypothesis test about the mathematical expectation at the unknown disper-

sion 

     There is the sample nxxx ,...,, 21  from the normal distribution ),( 2aN  and the 

dispersion 
2  is unknown, and it is required to test the hypothesis about the mathe-

matical expectation 00 : aaH  , where 0a  – is the known number. 

     For the hypothesis test the statistics is used 

n
s

ax
n
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ax
t


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
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. 

If 0H  is true, then )n(Tt 11  . For testing the hypothesis }:;:{ 0100 aaHaaH   

the bilateral significance test is applied   )|(| 2/ttP  (Fig. 13.1), for the hypotheses 

}:;:{ 0100 aaHaaH   – the right-sided criterion   )( ttP  (Fig. 13.2), for the 

hypotheses }:;:{ 0100 aaHaaH   – the left-sided criterion    )tt(P 1  (Fig. 

13.3). Here  2/t , t , 1t  – 2
100



-, 100 - and )( 1100 - are percentage distribu-

tion deviations  )n(T 11  , respectively. In Fig. 13.1, 13.2, 13.3 instead of the statistics 

g  it is required to consider the statistics t .  

13.3 Hypothesis test about the dispersion at the known mathematical expectation 

 

     The sample nxxx ,...,, 21  is taken from distribution ),( 2aN , mathematical expec-

tation a  is known, and it is required to test the hypothesis about dispersion 

2
0

2
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      For hypothesis testing the statistics is used 
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If 0H  is true )n(Hv 1 . For testing the hypothesis ;:{ 2
0

2
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The criterion critical region is denoted by dash lines in Fig. 13.4. The quantities 2
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Fig. 13.4 The critical region for the hypothesis about the normal general population 

dispersion 

 



13.4 Hypothesis test about dispersionat the unknown mathematical expectation 

 

    The sample nxxx ,...,, 21  is taken from the distribution ),( 2aN , mathematical ex-

pectation a  is unknown, and it is required to test the hypothesis about the dispersion 

2
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     For hypothesis test the statistics is used 
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The illustration of the given criterion is the same, as in Fig. 13.4, with replacement of 

v  by w . The quantities 2/w , 2/)2( w
 – 2

100


- and 2

2
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- are percentage dis-

tribution deviations  )n(H 11  . 

     For testing the hypothesis
2
0

2
0 :{  H ; }: 2

0
2

1  H  the right-sided criterion is 

used   )( wwP , for the hypotheses 
2
0

2
0 :{  H ; }: 2

0
2

1  H  – the left-

sided criterion    )ww(P 1 . 

 

 

 

 



13.5 Hypothesis test about mathematical expectation equality  

 

     There are two samples of different volumes mxx ,...,1  and nyy ,...,1  from two nor-

mal general population ),( 2
1 aN  and ),( 2

2 aN  respectively, on the assumption 

that dispersions of general populations are equal to one another, but are unknown. It is 

required to test the hypothesis that mathematical expectations of these distributions are 

equal, that is, to test the two-alternative parametrical complex hypothesis 

 211210 aa:H;aa:H  . 

     To solve this problem, we consider t -Student’s criterion, which is based on the 

comparison of sample mean. Let 
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known, 
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Since   in the given expression is unknown, statistics u  is inapplicable for the hy-

pothesis testing, and we will continue searching the appropriate statistics. We know 

that 
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Let's note, that v  does not depend on u , since xv  and yv
 are independent from u . 

Then statistics 
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Substituting here the expressions for u  and v , We obtain 
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Statistics t  does not contain unknown parameters and its distribution law is known. 

Hence, it is suitable for testing the formulated hypothesis. The hypothesis is tested in 

the following way. Having set by the significance equation  , by the Table of percent-

age distribution deviations  )nm(T 21   we find the quantity 2/t , satisfying to equal-

ity   )( 2/ttp . Then we find the empirical value of statistics эt  by formula 

(13.1). If it will appear, that 2/ttэ  , then the hypothesis 
0H

 is rejected to the favor 

of the hypothesis 
1H

. 

     For alternatives 211 aa:H   and 211 aa:H   , the right-sided and left-sided sig-

nificance criteria, respectively, are used. 



13.6 Hypothesis test about the dispersions equality  

 

     There are two samples of different volumes mxx ,...,1  and nyy ,...,1  from two nor-

mal general populations ),( 2
11 aN  and, ),( 2

22 aN , respectively, under conditions, 

when all parameters are unknown. It is required to test the hypothesis that dispersions 

of these distributions are equal, that is to check up the two-alternative parametrical 

hypothesis  10 H,H , where 

2
2

2
10 :  H . 

       For testing this hypothesis, the statistics is used (the big dispersion choose as nu-

merator) 
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It is easy to show, that if 0H  is true, then )n,m(Ff 111  . Really, since 
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Variable F satisfies to F-distribution with (n1–1, n2–1) freedom degrees. The crit-

ical area gets out as follows. For a significance value under the  F-distribution table 

it is defined critical value 1 2/ 2; 1, 1n nF   . If F, calculated on sample, more than this 



critical value 1 2/ 2; 1, 1n nF   hypothesis Н0 should be rejected. 

  



Lecture 14 

14.1 Two-dimensional random variables. The two-dimensional distribution law 

Two-dimensional random variable (Х, Y) or system of two random variables – 

set of two one-dimensional random variables which accept values as a result of carry-

ing out of the same experience. 

Two-dimensional random variables are characterised by sets of possible values 

X,  Y the a component and the joint (two-dimensional) law of distribution. Depend-

ing on the kind of set X and Y, two-dimensional random variables can be discrete, 

continuous and mixed. 

 The two-dimensional distribution law of probabilities – function (rule, ta-

ble, etc.) allowing to calculate probabilities of any random events connected by a two-

dimensional random variable (Х, Y): 

( ; ),  , , , .p X Y             

 

 

14.1.1 Two-dimensional cumulative distribution function 

Two-dimensional cumulative distribution function of a two-dimensional ran-

dom variable (Х, Y) is equal to probability of joint events X x Y y : 

    ,   ;F x y p X x Y y   . (14.1) 

Properties of two-dimensional cumulative distribution function: 

1. 0  F (x, y)  1. 

2. F (- , y) = F (x, - ) = F (- , - ) = 0,  F (+ ,+) = 1. 

3. F (x1, y)  F (x2, y), if x2> x1; F (x, y1)  F (x, y2), if y2> y1. 

4. Transition to one-dimensional characteristics: 

 ( , ) ( , ) ( ) ( )XF x p X x Y p X x F x       ; (14.2) 

 ( , ) ( , ) ( ) ( )YF y p X Y y p Y y F y       . (14.3) 

5. Probability of hit in rectangular area 

 
( ; ) ( , ) ( , ) ( , ) ( , )p X Y F F F F                   . 

Cumulative distribution function the most universal form of the law of distribution 

also can be used for the description both continuous, and discrete two-dimensional ran-

dom variables. 

 

14.1.3 Two-dimensional probability density function 

 The two-dimensional random variable (X, Y) is continuous if its cumulative dis-

tribution function F (х,) represents continuous, differentiable function on each of argu-

ments also there is a second mixed derivative
yx

yxF



 ),(2

. 



 The two-dimensional probability density function (distribution density) f(х,y) 

characterises the probability density in a vicinity of a point with co-ordinates (х,y) and 

is equal to the second mixed derivative distribution function: 

 

2

0
0

({ } { } ( , )
( , ) lim

x
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p x X x x y Y y y F x y
f x y

x y x y



  
 

     
 

 
. (14.4) 

The probability to get of value of a two-dimensional random variable (X, Y) in 

any area D is equal to the sum of all elements of probability for this area: 

 
( )

{( , ) }= ( , )
D

p X Y D f x y dxdy   (14.5) 

 Properties of two-dimensional density: 

1. ( , ) 0f x y   

2. A normalizing condition: 

 f x y dxdy( , ) 








 1 . (14.6) 

Geometrically – the volume of a body limited to a surface of distribution and a plane 

x0y, is equal to unit. 

3. Transition to distribution function: 

 F x y f x y dxdy

yx

( , ) ( , )


 . (14.7) 

 

4. Transition to one-dimensional characteristics: 

 ( ) ( , )Xf x f x y dy





  ;  (14.8) 

  ( ) ( , )Yf y f x y dx





  . (14.9) 

 

 14.2 Dependent and independent random variables 

 Random variable Х is independent from random variable Y if its distribution 

law does not depend on what value has accepted random variable Y. Dlja's sizes of 

independent sizes is carried out following equalites, i.e. criteria of independence: 

1) F (x, y) =p (X <x, Y <y) =p (X <x) p (Y <y) =FX (x) FY (y) x, y;  (14.10) 

2)  f (x, y) = f
X
 (x) f

Y
 (y) x, y;  (13.11) 

In the event that criteria are not carried out at least in one point, random variables 

X and Y are dependent. For independent random variables two-dimensional forms of 

the distribution law do not contain any additional information, except that which con-

tains in two one-dimensional laws. Thus, in case of dependence of random variables X 



and Y, transition from two one-dimensional laws to the two-dimensional law it is im-

possible. For this purpose it is necessary to know conditional distribution laws. 

 

14.3 Conditional distribution laws 

As the conditional distribution law is called the distribution of one random 

variable found provided that other random variable has accepted certain value. 

Conditional probability density function for continuous components X and Y are 

defined under formulas: 

 f (x/y) = f (x, y)/fY (y), for fY (y) 0;  (14.12) 

 f (y/x) = f (x, y)/fX (x), for fX (x) 0. (14.13) 

Conditional laws of distribution possess all properties of one-dimensional forms of 

laws of distribution corresponding to them. 

If sizes Х and Y are independent, conditional laws of distribution are equal to corre-

sponding unconditional:  

 f (x/y) = fX (x);  (14.14) 

 f (y/x) = fY (y). (14.15) 

It is necessary to distinguish functional and statistical dependences between ran-

dom variables. If Х and Y random variables, which are connected among themselves 

by functional dependence at Y = (), that, knowing value Х, it is possible to calculate 

precisely corresponding value Y, and on the contrary. 

 If between random variables there is a statistical dependence (random variables 

Х and Y are dependent - see (13.10 – 13.11)) on value of one of them it is possible to 

establish only conditional distribution of probabilities another, i.e. to define, with what 

probability there will be this or that value of other random variable. 

Example. Y - a grain yield, X - quantity of fertilizers on some ground. It is obvi-

ous that between Х and Y there is a statistical dependence as value Y (productivity on a 

site) depends and on many other factors. 

  



Lecture 15 

15.1 Numerical characteristics of two-dimensional random variable 

Let's consider the basic numerical characteristics of a two-dimensional random 

variable (X, Y). 

15.1.1 Mixed ordinary  moments 

The mixed ordinary moment order k+s it is equal to a mathematical expectation 

of product and kX sY : 

 , ( , ) M[ ] ( , ) , k s k s

k s x y X Y x y f x y dxdy
 

 

     (15.1) 

The most often used initial moments - mathematical expectation random variables X 

and Y: 

 1,0 0,1( , ),  ( , )X Ym x y m x y   ; (15.2) 

15.1.2 Mixed central moments 

The mixed central moment  order  k+s it is equal to a mathematical expectation 

of product of the centered random variables X
k sY : 

 , ( , ) M[( ) ( ) ] ( ) ( ) ( , ) , k s k s

k s X Y X Yx y X m Y m x m y m f x y dxdy
 

 

          (15.3) 

( , )f x y  - two-dimensional probability density function of a continuous random 

variable (X, Y). 

Let's consider the most often used central moments - - dispersion random variables X 

and Y: 

 
2 2

2,0 2,0 0,2 0,2( , ) ( , ) ,  ( , ) ( , )X X Y YD x y x y m D x y x y m         . (15.4) 

Special role as the characteristic of system of random variables, plays the second 

mixed central moment of an order 1+1 which 1,1( , )x y is called as the correlation mo-

ment or covariation random variables X, Y. 

15.1.3 Correlation moment 

The correlation moment KXY characterises degree of closeness of linear depend-

ence of random variables X and Y and dispersion of their values around a point (mX, 

mY): 

 1,1 1,1( , ) ( , )XY X YK x y x y m m    . (15.5) 

 Properties covariation KXY: 

 1. KXY = KYX. 

 2. The correlation moment of two independent random variables X and Y is equal 

to zero. 

3. The absolute size of the correlation moment of two random variables does not 

exceed a geometrical average of their dispersions 



 K D Dxy x y   Or Kxy x y   . (15.6) 

If 0XYK  , between random variables X and Y there is a negative covariation, i.e. 

than it is bigger value of one random variable, are more probable smaller values of 

another random variable (see statistical dependence in lecture. 13). An  example. Х – 

number of missed classes of the student, Y – an  examination mark. 

If 0XYK  , between sizes X and Y there is a positive covariation, i.e. than it is 

bigger value of one random variable, are more probable bigger values of another ran-

dom variable. An  example. X and Y - growth and weight of at random taken student. 

  

If 0XYK  , random variables X and Y are not correlated, i.e. between them there 

is no linear dependence.  

If 0XYK  , random variables X and Y are called as correlated. 

  

15.1.4 Correlation coefficient 

Correlation coefficient XYR  characterises degree of linear dependence of sizes 

and it is equal: 

 
XY XY

XY

X YX Y

K K
R

D D  
  . (15.7) 

Properties of correlation coefficient: 

1. The absolute size of correlation coefficient of two random variables does not 

exceed unit: 1XYR  . 

 2. 1XYR  , if random variables X, Y are connected by linear functional depend-

ence Y=aХ+b. 

The more absolute size of factor of correlation, the more close statistical depend-

ence random variables X, Y to linear functional dependence. 

 3. If random variables X and Y are independent then 0XYR   

 

15.2 Conditional numerical characteristics 

 For dependent two-dimensional random variables conditional laws of distribu-

tion (see (14.13, 14.14)) can be defined. These laws of distribution possess all proper-

ties of unconditional laws, and on their basis under known formulas (after replacement 

in them of unconditional laws on conditional) numerical characteristics which are 

called as conditional can be calculated. Conditional mathematical expectation have the 

greatest practical value. 

15.2.1 Regression 



As conditional mathematical expectation of random variable Х is called its math-

ematical expectation calculated when (to the condition) that random variable Y has ac-

cepted certain value Y = y: 

/[ / ] ( / ) ,X yM X y m x f x y dx





    (15.8) 

Similarly and for  

/[ / ] ( / ) ,Y xM Y x m y f y x dx





    (15.9) 

The conditional mathematical expectation /X ym  is called as X on y, and a con-

ditional mathematical expectation /Y xm  regression Y on х. It is obvious that condi-

tional mathematical expectation s represent some functions which depend on the value 

taken in a condition, i.e. / ( )X ym y , and / ( )Y xm x . 

Schedules of these dependences are called as regression lines (drawing see).  

 
 The regression line 1 specifies that between random variables X, Y there is a pos-

itive covariation, i.e. 0XYK  . The regression line 2 specifies that random variables 

X, Y are not dependent, and the regression line 3 - that between random variables X, Y 

exists negative covariation, i.e. 0XYK  . 

The regression analysis allows to reveal character of dependence between random 

variables X, Y. Random variables X, Y are called as linearly correlated if regression 

lines are straight lines. The equations of linear regression look like: 

 / /( ),       ( )Y X
Y x Y XY X X y X XY Y

X Y

m m R x m m m R y m
 

 
      , (15.10) 

Both straight lines pass through a point (mX, mY) which name the centre of joint 

distribution of sizes Х and Y. 

 

 

  



Lecture 16 

16.1. Statistical processing of two-dimensional random variables 

Let the two-dimensional random variable is spent n independent experiments, in 

each of which (X, Y) assumes certain values and results of experiments represent two-

dimensional sample: 

{(х1, у1), (х2, у2), …, (хn, уn)}. 

Statistical processing of two-dimensional data includes: 

- processing and the analysis of components X and Y as one-dimensional varia-

bles (lectures 13 ),  

- calculation of estimations and the analysis of the parameters inherent only in 

two-dimensional (multidimensional) random variables.  

As a rule, following estimations of numerical characteristics of a two-dimen-

sional random variable (X, Y) are defined: 

– Estimations of mathematical expectations: 

 
*

1

1 n

X i

i

m x x
n 

   ; (16.1) 

 
*

1

1 n

Y i

i

m y y
n 

   ; (16.2) 

– Dispersion estimations: 
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   (16.4) 

– Standard deviation estimations: 

 
2

0 0( ) ( )S x S x  (16.5) 

 
2

0 0( ) ( ).S y S y  (16.6) 

 



16.1.1. An estimation of the correlation moment 

The consistent unbiased estimation of the correlation moment is equal 
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Where xi, yi – values random variables X, Y in i-м experiment; 

,x y  – Average values of random variables X and Y, respectively. 

 

16.1.2. The correlation coefficient estimate 

The consistent estimate of the correlation coefficient is equal to 
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 (16.8) 

where  0 0( ), ( )S x S y – are standard deviation estimates of random variables X and Y, 

respectively. 

16.1.3. The confidence interval for correlation coefficient 

The confidence interval for correlation coefficient with reliability  for the case 

of two-dimensional normal distribution looks like: 
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where
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z  – is the argument value of Laplace function, arg ( )
2

z


  , i.e. Ф (z) =
2


. 

If the sample size is large enough (n> 20), then  the distribution law of the 

correlation coefficient estimate *
XYR can be considered asymptotically normal, and  

confidence interval can be constructed by equation: 
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 (16.10) 

16.2. Statistical criteria of two-dimensional random variables 

16.2.1. A hypothesis about absence of correlation dependence 

It is supposed that the two-dimensional random variable (X, Y) is distributed un-

der the normal law. If the module of a dot estimation of factor of the correlation, cal-

culated on initial two-dimensional sample of a random variable (X, Y), is not great (

* 0,1...0,2XYR  ) the hypothesis about absence of correlation dependence between var-

iables X and Y can be checked up following in the image. 

1. The hypothesis is formulated: 

H0: 0XYR  ; 

H1: 0XYR  . 

Here – XYR theoretical factor of correlation. 

2. The estimation of factor of correlation *

XYR by equation (14.8) is calculated *

XYR . 

3. If the sample volume is not great (n <20) items 4 … 6 are carried out, differently 

– items 7 … 9 are carried out 

4. Value of criterion is defined 
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, (16.11) 

Which is distributed under the law of Student with (n–2) freedom degrees if hypothesis 

H
0
 is true.  

5. On the set significance value the confidential probability is calculated and 

=1  critical value gets out of the table of Student distribution , 2nt  . 



6. If , 2nt t  , hypothesis H
0
 deviates, and consequently, variables X, Y are 

correlated. Otherwise hypothesis H
0
 is accepted. 

7. Value of criterion is defined 
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R
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
, (16.12) 

Which is distributed practically under the normal law if hypothesis H
0
 is true.  

8. On the set significance value from thetable of function of Laplace critical 

value is defined
1

arg
2

Z

 
  

 
, i.e

1
( )

2
Z


  . 

9. If Z Z , hypothesis H
0
 deviates, and consequently, variables X, Y are cor-

related. Otherwise hypothesis H
0
 is accepted. 

 

16.3. A hypothesis about equality of distribution laws 

Let 1 2{ , ,..., }nx x x , 1 2{ , ,..., }my y y  – independent random samples of random varia-

bles X and Y. 

The two-alternative hypothesis is formulated: 

Н0: ( ) ( )X YF x F y  i.e. two samples belong to the same general population; 

Н1: ( ) ( )X YF x F y . 

Concerning the distribution laws of random variables X and Y no assumptions 

made.  

For check of the given hypothesis the criterion Wilcoxon (Mann-Witny) of is 

used. Values 
11 2{ , ,..., }nx x x

21 2{ , ,..., }ny y y of both samples are ranked together in in-

creasing order. The criterion is based on the statistics 
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,                                      (16.13) 

where 
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else

yx ji

ji  

This statistics U represents the total number of inversions, when the sample units 

nx...,,x1  precede to the sample units my...,,y1  in the general variational series. The 

pair of values (хi yj) forms inversion, if yj <хi.  

Let, for example, for n = 4 and m = 5 such sequence has turned out: y5 x3 x4 y1 y2 

x2 y4 y3 x1. In our example x3 and x4 form on one inversion (with y5), x2 forms three 

inversions (with y5 y1 y2), and x1 forms five inversions (with all).  

It is proved that if 0H  is true, then 

2

mn
)U(E 

, 12

1)nm(mn
)U(D




.                        (16.14) 

As a criterion, the variable U– the complete number of inversions - is used. The 

given variable is distributed under Wilcoxon law and hypothesis Н0 is rejected, if U is 

larger, than the critical value U taken from the Wilcoxon table for the specified sig-

nificance level .  

For large sample sizes (n and m exceed 25), the critical value U is determined 

by equation 

 
( 1)

12

nm n m
U Z 

 
 , (16.15) 

where Z – is the argument value of Laplace function
1

arg
2

Z

 
  

 
. 

  



Lecture 17 

17.1. The regression characteristics estimate 

 In the regression analysis, the interrelation between random and not random var-

iables based on experimental data is studied. Unlike the correlation analysis, in the 

regression analysis not all studied interrelated variables are random, and the conditions 

imposed on the studied variables, are less burdensome. Therefore, it is considered that 

problems regression analysis are more often in practice in comparison with problems 

of the correlation analysis. 

 

Let n independent experiments are performed , in each of which two-dimensional ran-

dom variable (Х, Y) assumes certain values, and experimental results represent two-

dimensional sample of the kind  1 1 2 2{( ,  ), ,  , ,( ,  )}. n nх у х у х у It is necessary to reveal 

the kind of relationship between variables X, Y  based on  the available sample, i.e. to 

obtain the estimate of the conditional mathematical expectation 
*

/Y xm  regression 

estimate Y for х. The given estimate represents a certain function: 

*

/ 0 1( ) ( , , ,..., )Y x mm y x x a a a  , 

where  0 1, ,..., ma a a  - are unknown parameters. 

 Thus, first, it is necessary to establish the dependence type of 0 1( , , ,..., )mx a a a

, i.e. whether it is linear, quadratic, exponential and etc., second, to determine the values 

of unknown parameters 0 1, ,..., ma a a . To determine the dependence type, the scatter dia-

gram (or correlation field) is constructed, which can be obtained if to represent exper-

imental results in the form of points on the plane in the Cartesian coordinates system 

(see Figure). Based on the analysis of the correlation field, we choose the type of the 

empirical regression line 0 1( ) ( , , ,..., )my x x a a a , which should pass through 

points (х1, y1)..., (xn, yn) so, that its graph would correspond to the unknown regression 

line in the best way, i.e. its values should be approximately equal to Y arithmetic mean 

values for each value of  Х=х.  



 

In many cases, the dependence type can be chosen based on theoretical or other 

reasons. 

To determine the parameter values, at which the best matching of the curve 

0 1( , , ,..., )my x a a a and experimental points {(х1, у1), (х2, у2), …, (хn, уn)} is pro-

vided, the least squares method  is used. 

 

17.1.1. The least squares method  

The essence of the given method is that parameters values 0 1, ,..., ma a a  should be 

chosen so, that the sum of squares of the experimental points deviations from the fitting 

curve turned to the minimum: 

  
2

0

1

( , ,..., ) min
n

i i m

i

y x a a


  . (17.1) 

Let's find the values , 1,...,ja j m turning the left part of expression (15.1) into 

minimum. For this purpose, we differentiate it with respect to , 1,...,ja j m  and 

equate the derivatives to zero (at the point of extremum the derivative is equal to zero): 

  0

1

( )
( , ,..., ) 0, 0,1,...,

n
i

i i m

i j

x
y x a a j m

a







  


 , (17.2) 



where 
( )i

j

x

a




 is the value of the private derivative function  with respect to param-

eter  ja  at point хi. 

 The system of the equations (17.2) contains the same number of equations, as 

the number of unknown parameters, i.e. m+1. 

 It is impossible to solve system (17.2) in a general form, for this purpose, it is 

necessary to set a particular kind of function. 

 Let y represent the power series: 

 0

0

( , ,..., )
m

j

m j

j

y x a a a x


  . (17.3) 

Then (17.2) will become the linear equations system (LES): 

    
0 1 1

, 0,1,...,
m n n

j k k

j i i i

j i i

a x y x k m


  

     (17.4) 

We divide both parts of equations by the sample size n, the system will become 

 
* *

,1

0

( ) ( , ), 0,1,...,
m

j j k i k i i

j

a x x y k m 



   (17.5) 

where *( )k x  is the ordinary moment estimate of k-order of variable X:

 *

1

1
( )

n
k

k i

i

x x
n




  ; 

*

,1( , )k x y   is the estimate of the mixed ordinary moment of k+1-order of varia-

bles X and Y: 

*

,1

1

1
( , )

n
k

k i i

i

x y x y
n




  . 

In system (17.5), , 1,...,ja j m  are variables, and the estimates of ordinary mo-

ments *

,1( , )k x y  are system of linear equations factors. Having solved the given system, 

we determine the estimates of the parameters 
* * *

0 1, ,..., ma a a , providing the best matching 

of the curve 0 1( , , ,..., )my x a a a and experimental points {(х1, у1), (х2, у2), …, (хn, 

уn)}. 



Example. We determine the linear regression estimate / 0 1    . Y xm a a x  Sys-

tem (16.5) for m=1 looks like  

* * *

0 0 1 1 0,1

* * *

1 0 2 1 1,1

( ) ( ) ( , )

( ) ( ) ( , )

x a x a x y

x a x a x y

  

  

  


 
. 

Taking into account that
* * *

0 1 0,1( ) 1, ( ) , ( , )x x x x y y     , we obtain: 

0 1

* *

0 2 1 1,1( ) ( , )

a xa y

xa x a x y 

 


 
. 

Whence 

 
* *
1,1*

1 * 2 2
2 0

( , )
,

( ) ( )

XY
x y x y K

a
x x S x





 
 


 (17.6) 

 * *

0 1a y a x   , (17.7) 

what corresponds to linear regression equations (15.10). 

 

 

 


