14.1 Functions of Several Variables

In this section we study functions of two or more variables from four points of view:

- verbally (by a description in words)
- numerically (by a table of values)
- algebraically (by an explicit formula)
- visually (by a graph or level curves)

Functions of Two Variables

The temperature *T* at a point on the surface of the earth at any given time depends on the longitude *x* and latitude *y* of the point. We can think of *T* as being a function of the two variables *x* and *y*, or as a function of the pair (*x*, *y*). We indicate this functional dependence by writing T = f(x, y).

The volume V of a circular cylinder depends on its radius r and its height h. In fact, we know that $V = \pi r^2 h$. We say that V is a function of r and h, and we write $V(r, h) = \pi r^2 h$.

Definition A **function** f **of two variables** is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) \mid (x, y) \in D\}$.

We often write z = f(x, y) to make explicit the value taken on by f at the general point (x, y). The variables x and y are **independent variables** and z is the **dependent variable**. [Compare this with the notation y = f(x) for functions of a single variable.]

A function of two variables is just a function whose domain is a subset of \mathbb{R}^2 and whose range is a subset of \mathbb{R} . One way of visualizing such a function is by means of an arrow diagram (see Figure 1), where the domain *D* is represented as a subset of the *xy*-plane and the range is a set of numbers on a real line, shown as a *z*-axis. For instance, if f(x, y) represents the temperature at a point (x, y) in a flat metal plate with the shape of *D*, we can think of the *z*-axis as a thermometer displaying the recorded temperatures.

If a function f is given by a formula and no domain is specified, then the domain of f is understood to be the set of all pairs (x, y) for which the given expression is a well-defined real number.

EXAMPLE 1 For each of the following functions, evaluate f(3, 2) and find and sketch the domain.

(a)
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$
 (b) $f(x, y) = x \ln(y^2 - x)$

SOLUTION

(a)
$$f(3,2) = \frac{\sqrt{3+2+1}}{3-1} = \frac{\sqrt{6}}{2}$$

The expression for f makes sense if the denominator is not 0 and the quantity under the square root sign is nonnegative. So the domain of f is

$$D = \{(x, y) \mid x + y + 1 \ge 0, \ x \ne 1\}$$

The inequality $x + y + 1 \ge 0$, or $y \ge -x - 1$, describes the points that lie on or above

FIGURE 1

(b)

FIGURE 3 Domain of $f(x, y) = x \ln(y^2 - x)$

The New Wind-Chill Index

A new wind-chill index was introduced in November of 2001 and is more accurate than the old index for measuring how cold it feels when it's windy. The new index is based on a model of how fast a human face loses heat. It was developed through clinical trials in which volunteers were exposed to a variety of temperatures and wind speeds in a refrigerated wind tunnel. the line y = -x - 1, while $x \neq 1$ means that the points on the line x = 1 must be excluded from the domain. (See Figure 2.)

$$f(3, 2) = 3 \ln(2^2 - 3) = 3 \ln 1 = 0$$

Since $\ln(y^2 - x)$ is defined only when $y^2 - x > 0$, that is, $x < y^2$, the domain of *f* is $D = \{(x, y) \mid x < y^2\}$. This is the set of points to the left of the parabola $x = y^2$. (See Figure 3.)

Not all functions can be represented by explicit formulas. The function in the next example is described verbally and by numerical estimates of its values.

EXAMPLE 2 In regions with severe winter weather, the *wind-chill index* is often used to describe the apparent severity of the cold. This index W is a subjective temperature that depends on the actual temperature T and the wind speed v. So W is a function of T and v, and we can write W = f(T, v). Table 1 records values of W compiled by the National Weather Service of the US and the Meteorological Service of Canada.

TABLE 1 Wind-chill index as a function of air temperature and wind speed

 Wind speed (km/h)

						1		/				
nperature (°C)	T	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
ıl ter	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
ctui	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
A	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

For instance, the table shows that if the temperature is -5° C and the wind speed is 50 km/h, then subjectively it would feel as cold as a temperature of about -15° C with no wind. So

$$f(-5, 50) = -15$$

EXAMPLE 3 In 1928 Charles Cobb and Paul Douglas published a study in which they modeled the growth of the American economy during the period 1899–1922. They considered a simplified view of the economy in which production output is determined by the amount of labor involved and the amount of capital invested. While there are many other factors affecting economic performance, their model proved to be remarkably accurate. The function they used to model production was of the form

$$P(L,K) = bL^{\alpha}K^{1-\alpha}$$

where P is the total production (the monetary value of all goods produced in a year), L is the amount of labor (the total number of person-hours worked in a year), and K is

1

Year	Р	L	K
1899	100	100	100
1900	101	105	107
1901	112	110	114
1902	122	117	122
1903	124	122	131
1904	122	121	138
1905	143	125	149
1906	152	134	163
1907	151	140	176
1908	126	123	185
1909	155	143	198
1910	159	147	208
1911	153	148	216
1912	177	155	226
1913	184	156	236
1914	169	152	244
1915	189	156	266
1916	225	183	298
1917	227	198	335
1918	223	201	366
1919	218	196	387
1920	231	194	407
1921	179	146	417
1922	240	161	431
1	1		1

TABLE 2

FIGURE 4 Domain of $g(x, y) = \sqrt{9 - x^2 - y^2}$

FIGURE 5

the amount of capital invested (the monetary worth of all machinery, equipment, and buildings). In Section 14.3 we will show how the form of Equation 1 follows from certain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each assigned the value 100. The values for other years were expressed as percentages of the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the function

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

(See Exercise 79 for the details.)

If we use the model given by the function in Equation 2 to compute the production in the years 1910 and 1920, we get the values

$$P(147, 208) = 1.01(147)^{0.75}(208)^{0.25} \approx 161.9$$
$$P(194, 407) = 1.01(194)^{0.75}(407)^{0.25} \approx 235.8$$

which are quite close to the actual values, 159 and 231.

The production function $\boxed{1}$ has subsequently been used in many settings, ranging from individual firms to global economics. It has become known as the **Cobb-Douglas production function**. Its domain is $\{(L, K) \mid L \ge 0, K \ge 0\}$ because *L* and *K* represent labor and capital and are therefore never negative.

EXAMPLE 4 Find the domain and range of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

SOLUTION The domain of g is

$$D = \{(x, y) \mid 9 - x^2 - y^2 \ge 0\} = \{(x, y) \mid x^2 + y^2 \le 9\}$$

which is the disk with center (0, 0) and radius 3. (See Figure 4.) The range of g is

$$\{z \mid z = \sqrt{9 - x^2 - y^2}, (x, y) \in D\}$$

Since z is a positive square root, $z \ge 0$. Also, because $9 - x^2 - y^2 \le 9$, we have

$$\sqrt{9 - x^2 - y^2} \le 3$$

So the range is

$$\{z \mid 0 \le z \le 3\} = [0, 3]$$

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its graph.

Definition If *f* is a function of two variables with domain *D*, then the **graph** of *f* is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in *D*.

Just as the graph of a function f of one variable is a curve C with equation y = f(x), so the graph of a function f of two variables is a surface S with equation z = f(x, y). We can visualize the graph S of f as lying directly above or below its domain D in the xy-plane (see Figure 5).

FIGURE 6

FIGURE 7 Graph of $q(x, y) = \sqrt{9 - x^2 - y^2}$

EXAMPLE 5 Sketch the graph of the function f(x, y) = 6 - 3x - 2y.

SOLUTION The graph of *f* has the equation z = 6 - 3x - 2y, or 3x + 2y + z = 6, which represents a plane. To graph the plane we first find the intercepts. Putting y = z = 0 in the equation, we get x = 2 as the *x*-intercept. Similarly, the *y*-intercept is 3 and the *z*-intercept is 6. This helps us sketch the portion of the graph that lies in the first octant in Figure 6.

The function in Example 5 is a special case of the function

$$f(x, y) = ax + by + c$$

which is called a linear function. The graph of such a function has the equation

z = ax + by + c or ax + by - z + c = 0

so it is a plane. In much the same way that linear functions of one variable are important in single-variable calculus, we will see that linear functions of two variables play a central role in multivariable calculus.

V EXAMPLE 6 Sketch the graph of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

SOLUTION The graph has equation $z = \sqrt{9 - x^2 - y^2}$. We square both sides of this equation to obtain $z^2 = 9 - x^2 - y^2$, or $x^2 + y^2 + z^2 = 9$, which we recognize as an equation of the sphere with center the origin and radius 3. But, since $z \ge 0$, the graph of *g* is just the top half of this sphere (see Figure 7).

NOTE An entire sphere can't be represented by a single function of *x* and *y*. As we saw in Example 6, the upper hemisphere of the sphere $x^2 + y^2 + z^2 = 9$ is represented by the function $g(x, y) = \sqrt{9 - x^2 - y^2}$. The lower hemisphere is represented by the function $h(x, y) = -\sqrt{9 - x^2 - y^2}$.

EXAMPLE 7 Use a computer to draw the graph of the Cobb-Douglas production function $P(L, K) = 1.01L^{0.75}K^{0.25}$.

SOLUTION Figure 8 shows the graph of *P* for values of the labor *L* and capital *K* that lie between 0 and 300. The computer has drawn the surface by plotting vertical traces. We see from these traces that the value of the production *P* increases as either *L* or *K* increases, as is to be expected.

FIGURE 8

EXAMPLE 8 Find the domain and range and sketch the graph of $h(x, y) = 4x^2 + y^2$.

SOLUTION Notice that h(x, y) is defined for all possible ordered pairs of real numbers (x, y), so the domain is \mathbb{R}^2 , the entire *xy*-plane. The range of *h* is the set $[0, \infty)$ of all non-negative real numbers. [Notice that $x^2 \ge 0$ and $y^2 \ge 0$, so $h(x, y) \ge 0$ for all *x* and *y*.]

The graph of *h* has the equation $z = 4x^2 + y^2$, which is the elliptic paraboloid that we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical traces are parabolas (see Figure 9).

FIGURE 9 Graph of $h(x, y) = 4x^2 + y^2$

Computer programs are readily available for graphing functions of two variables. In most such programs, traces in the vertical planes x = k and y = k are drawn for equally spaced values of k and parts of the graph are eliminated using hidden line removal.

Figure 10 shows computer-generated graphs of several functions. Notice that we get an especially good picture of a function when rotation is used to give views from different

FIGURE 10

vantage points. In parts (a) and (b) the graph of f is very flat and close to the xy-plane except near the origin; this is because $e^{-x^2-y^2}$ is very small when x or y is large.

Level Curves

So far we have two methods for visualizing functions: arrow diagrams and graphs. A third method, borrowed from mapmakers, is a contour map on which points of constant elevation are joined to form *contour lines*, or *level curves*.

Definition The **level curves** of a function *f* of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

A level curve f(x, y) = k is the set of all points in the domain of f at which f takes on a given value k. In other words, it shows where the graph of f has height k.

You can see from Figure 11 the relation between level curves and horizontal traces. The level curves f(x, y) = k are just the traces of the graph of f in the horizontal plane z = k projected down to the xy-plane. So if you draw the level curves of a function and visualize them being lifted up to the surface at the indicated height, then you can mentally piece together a picture of the graph. The surface is steep where the level curves are close together. It is somewhat flatter where they are farther apart.

FIGURE 11

TEC Visual 14.1A animates Figure 11 by showing level curves being lifted up to graphs of functions.

One common example of level curves occurs in topographic maps of mountainous regions, such as the map in Figure 12. The level curves are curves of constant elevation above sea level. If you walk along one of these contour lines, you neither ascend nor descend. Another common example is the temperature function introduced in the opening paragraph of this section. Here the level curves are called **isothermals** and join locations with the same

temperature. Figure 13 shows a weather map of the world indicating the average January

temperatures. The isothermals are the curves that separate the colored bands.

FIGURE 13 World mean sea-level temperatures in January in degrees Celsius From Atmosphere: Introduction to Meteorology, 4th Edition, 1989. © 1989 Pearson Education, Inc.

FIGURE 14

FIGURE 15 Contour map of f(x, y) = 6 - 3x - 2y

EXAMPLE 9 A contour map for a function f is shown in Figure 14. Use it to estimate the values of f(1, 3) and f(4, 5).

SOLUTION The point (1, 3) lies partway between the level curves with *z*-values 70 and 80. We estimate that

 $f(1,3) \approx 73$

Similarly, we estimate that

 $f(4,5) \approx 56$

EXAMPLE 10 Sketch the level curves of the function f(x, y) = 6 - 3x - 2y for the values k = -6, 0, 6, 12.

SOLUTION The level curves are

$$6 - 3x - 2y = k$$
 or $3x + 2y + (k - 6) = 0$

This is a family of lines with slope $-\frac{3}{2}$. The four particular level curves with k = -6, 0, 6, and 12 are 3x + 2y - 12 = 0, 3x + 2y - 6 = 0, 3x + 2y = 0, and 3x + 2y + 6 = 0. They are sketched in Figure 15. The level curves are equally spaced parallel lines because the graph of *f* is a plane (see Figure 6).

V EXAMPLE 11 Sketch the level curves of the function

$$g(x, y) = \sqrt{9 - x^2 - y^2}$$
 for $k = 0, 1, 2, 3$

SOLUTION The level curves are

$$\sqrt{9 - x^2 - y^2} = k$$
 or $x^2 + y^2 = 9 - k^2$

This is a family of concentric circles with center (0, 0) and radius $\sqrt{9 - k^2}$. The cases k = 0, 1, 2, 3 are shown in Figure 16. Try to visualize these level curves lifted up to form a surface and compare with the graph of *g* (a hemisphere) in Figure 7. (See TEC Visual 14.1A.)

FIGURE 16 Contour map of $g(x, y) = \sqrt{9 - x^2 - y^2}$

> **EXAMPLE 12** Sketch some level curves of the function $h(x, y) = 4x^2 + y^2 + 1$. SOLUTION The level curves are

> > $4x^2 + y^2 + 1 = k$ or $\frac{x^2}{\frac{1}{4}(k-1)} + \frac{y^2}{k-1} = 1$

which, for k > 1, describes a family of ellipses with semiaxes $\frac{1}{2}\sqrt{k-1}$ and $\sqrt{k-1}$. Figure 17(a) shows a contour map of *h* drawn by a computer. Figure 17(b) shows these level curves lifted up to the graph of *h* (an elliptic paraboloid) where they become horizontal traces. We see from Figure 17 how the graph of *h* is put together from the level curves.

TEC Visual 14.1B demonstrates the connection between surfaces and their contour maps.

The graph of $h(x, y) = 4x^2 + y^2 + 1$ is formed by lifting the level curves.

EXAMPLE 13 Plot level curves for the Cobb-Douglas production function of Example 3.

SOLUTION In Figure 18 we use a computer to draw a contour plot for the Cobb-Douglas production function

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

Level curves are labeled with the value of the production *P*. For instance, the level curve labeled 140 shows all values of the labor *L* and capital investment *K* that result in a production of P = 140. We see that, for a fixed value of *P*, as *L* increases *K* decreases, and vice versa.

For some purposes, a contour map is more useful than a graph. That is certainly true in Example 13. (Compare Figure 18 with Figure 8.) It is also true in estimating function values, as in Example 9.

Figure 19 shows some computer-generated level curves together with the corresponding computer-generated graphs. Notice that the level curves in part (c) crowd together near the origin. That corresponds to the fact that the graph in part (d) is very steep near the origin.

Functions of Three or More Variables

A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^3$ a unique real number denoted by f(x, y, z). For instance, the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time t, so we could write T = f(x, y, t).

EXAMPLE 14 Find the domain of *f* if

$$f(x, y, z) = \ln(z - y) + xy \sin z$$

SOLUTION The expression for f(x, y, z) is defined as long as z - y > 0, so the domain of f is

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid z > y\}$$

This is a **half-space** consisting of all points that lie above the plane z = y.

It's very difficult to visualize a function f of three variables by its graph, since that would lie in a four-dimensional space. However, we do gain some insight into f by examining its **level surfaces**, which are the surfaces with equations f(x, y, z) = k, where k is a constant. If the point (x, y, z) moves along a level surface, the value of f(x, y, z) remains fixed.

EXAMPLE 15 Find the level surfaces of the function

$$f(x, y, z) = x^2 + y^2 + z^2$$

SOLUTION The level surfaces are $x^2 + y^2 + z^2 = k$, where $k \ge 0$. These form a family of concentric spheres with radius \sqrt{k} . (See Figure 20.) Thus, as (x, y, z) varies over any sphere with center *O*, the value of f(x, y, z) remains fixed.

Functions of any number of variables can be considered. A **function of** *n* **variables** is a rule that assigns a number $z = f(x_1, x_2, ..., x_n)$ to an *n*-tuple $(x_1, x_2, ..., x_n)$ of real numbers. We denote by \mathbb{R}^n the set of all such *n*-tuples. For example, if a company uses *n* different ingredients in making a food product, c_i is the cost per unit of the *i*th ingredient, and x_i units of the *i*th ingredient are used, then the total cost *C* of the ingredients is a function of the *n* variables $x_1, x_2, ..., x_n$:

3
$$C = f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

The function f is a real-valued function whose domain is a subset of \mathbb{R}^n . Sometimes we will use vector notation to write such functions more compactly: If $\mathbf{x} = \langle x_1, x_2, ..., x_n \rangle$, we often write $f(\mathbf{x})$ in place of $f(x_1, x_2, ..., x_n)$. With this notation we can rewrite the function defined in Equation 3 as

$$f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$$

where $\mathbf{c} = \langle c_1, c_2, \dots, c_n \rangle$ and $\mathbf{c} \cdot \mathbf{x}$ denotes the dot product of the vectors \mathbf{c} and \mathbf{x} in V_n .

In view of the one-to-one correspondence between points $(x_1, x_2, ..., x_n)$ in \mathbb{R}^n and their position vectors $\mathbf{x} = \langle x_1, x_2, ..., x_n \rangle$ in V_n , we have three ways of looking at a function f defined on a subset of \mathbb{R}^n :

- **1.** As a function of *n* real variables x_1, x_2, \ldots, x_n
- **2**. As a function of a single point variable (x_1, x_2, \ldots, x_n)
- **3.** As a function of a single vector variable $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle$

We will see that all three points of view are useful.

FIGURE 20

14.1 Exercises

- 1. In Example 2 we considered the function W = f(T, v), where *W* is the wind-chill index, *T* is the actual temperature, and *v* is the wind speed. A numerical representation is given in Table 1.
 - (a) What is the value of f(-15, 40)? What is its meaning?
 - (b) Describe in words the meaning of the question "For what value of v is f(-20, v) = -30?" Then answer the question.
 - (c) Describe in words the meaning of the question "For what value of *T* is f(T, 20) = -49?" Then answer the question.
 - (d) What is the meaning of the function W = f(-5, v)?Describe the behavior of this function.
 - (e) What is the meaning of the function W = f(T, 50)? Describe the behavior of this function.
- **2.** The *temperature-humidity index I* (or humidex, for short) is the perceived air temperature when the actual temperature is *T* and the relative humidity is *h*, so we can write I = f(T, h). The following table of values of *I* is an excerpt from a table compiled by the National Oceanic & Atmospheric Administration.

TABLE 3 Apparent temperature as a function of temperature and humidity

Relative humidity (%)

	T h T	20	30	40	50	60	70
temperature (°F	80	77	78	79	81	82	83
	85	82	84	86	88	90	93
	90	87	90	93	96	100	106
ctual	95	93	96	101	107	114	124
A	100	99	104	110	120	132	144

- (a) What is the value of f(95, 70)? What is its meaning?
- (b) For what value of h is f(90, h) = 100?
- (c) For what value of T is f(T, 50) = 88?
- (d) What are the meanings of the functions I = f(80, h) and I = f(100, h)? Compare the behavior of these two functions of h.
- **3.** A manufacturer has modeled its yearly production function *P* (the monetary value of its entire production in millions of dollars) as a Cobb-Douglas function

$$P(L, K) = 1.47L^{0.65}K^{0.35}$$

where *L* is the number of labor hours (in thousands) and *K* is the invested capital (in millions of dollars). Find P(120, 20) and interpret it.

4. Verify for the Cobb-Douglas production function

$$P(L, K) = 1.01L^{0.75}K^{0.25}$$

discussed in Example 3 that the production will be doubled if both the amount of labor and the amount of capital are doubled. Determine whether this is also true for the general production function

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

5. A model for the surface area of a human body is given by the function

$$S = f(w, h) = 0.1091w^{0.425}h^{0.725}$$

where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet.

- (a) Find f(160, 70) and interpret it.
- (b) What is your own surface area?
- **6.** The wind-chill index *W* discussed in Example 2 has been modeled by the following function:

$$W(T, v) = 13.12 + 0.6215T - 11.37v^{0.16} + 0.3965Tv^{0.16}$$

Check to see how closely this model agrees with the values in Table 1 for a few values of T and v.

- 7. The wave heights *h* in the open sea depend on the speed *v* of the wind and the length of time *t* that the wind has been blowing at that speed. Values of the function h = f(v, t) are recorded in feet in Table 4.
 - (a) What is the value of f(40, 15)? What is its meaning?

TABLE 4

- (b) What is the meaning of the function h = f(30, t)? Describe the behavior of this function.
- (c) What is the meaning of the function h = f(v, 30)? Describe the behavior of this function.

	Duration (hours)								
l speed (knots)	v t	5	10	15	20	30	40	50	
	10	2	2	2	2	2	2	2	
	15 4		4	5	5	5	5	5	
	20	5	7	8	8	9	9	9	
	30	9	13	16	17	18	19	19	
Wind	40	14	21	25	28	31	33	33	
	50	19	29	36	40	45	48	50	
	60	24	37	47	54	62	67	69	

8. A company makes three sizes of cardboard boxes: small, medium, and large. It costs \$2.50 to make a small box, \$4.00

Graphing calculator or computer required

1. Homework Hints available at stewartcalculus.com

for a medium box, and \$4.50 for a large box. Fixed costs are \$8000.

- (a) Express the cost of making *x* small boxes, *y* medium boxes, and *z* large boxes as a function of three variables: C = f(x, y, z).
- (b) Find f(3000, 5000, 4000) and interpret it.
- (c) What is the domain of f?
- 9. Let $g(x, y) = \cos(x + 2y)$.
 - (a) Evaluate g(2, -1).
 - (b) Find the domain of g.
 - (c) Find the range of g.
- **10.** Let $F(x, y) = 1 + \sqrt{4 y^2}$.
 - (a) Evaluate F(3, 1).
 - (b) Find and sketch the domain of F.
 - (c) Find the range of *F*.
- 11. Let f(x, y, z) = √x + √y + √z + ln(4 x² y² z²).
 (a) Evaluate f(1, 1, 1).
 (b) Find and describe the domain of f.
- 12. Let $g(x, y, z) = x^3y^2z\sqrt{10 x y z}$. (a) Evaluate g(1, 2, 3). (b) Find and describe the domain of g.

13–22 Find and sketch the domain of the function.

13.
$$f(x, y) = \sqrt{2x - y}$$

14. $f(x, y) = \sqrt{xy}$
15. $f(x, y) = \ln(9 - x^2 - 9y^2)$
16. $f(x, y) = \sqrt{x^2 - y^2}$
17. $f(x, y) = \sqrt{1 - x^2} - \sqrt{1 - y^2}$
18. $f(x, y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$
19. $f(x, y) = \frac{\sqrt{y - x^2}}{1 - x^2}$
20. $f(x, y) = \arcsin(x^2 + y^2 - 2)$
21. $f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$
22. $f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$

23–31 Sketch the graph of the function.

23. $f(x, y) = 1 + y$	24. $f(x, y) = 2 - x$
25. $f(x, y) = 10 - 4x - 5y$	26. $f(x, y) = e^{-y}$
27. $f(x, y) = y^2 + 1$	28. $f(x, y) = 1 + 2x^2 + 2y^2$
29. $f(x, y) = 9 - x^2 - 9y^2$	30. $f(x, y) = \sqrt{4x^2 + y^2}$
31. $f(x, y) = \sqrt{4 - 4x^2 - y^2}$	

32. Match the function with its graph (labeled I–VI). Give reasons for your choices.

(a) $f(x, y) = x + y $	(b) $f(x, y) = xy $
(c) $f(x, y) = \frac{1}{1 + x^2 + y^2}$	(d) $f(x, y) = (x^2 - y^2)^2$
(e) $f(x, y) = (x - y)^2$	(f) $f(x, y) = \sin(x + y)$

33. A contour map for a function f is shown. Use it to estimate the values of f(-3, 3) and f(3, -2). What can you say about the shape of the graph?

- **34.** Shown is a contour map of atmospheric pressure in North America on August 12, 2008. On the level curves (called isobars) the pressure is indicated in millibars (mb).
 - (a) Estimate the pressure at *C* (Chicago), *N* (Nashville), *S* (San Francisco), and *V* (Vancouver).
 - (b) At which of these locations were the winds strongest?

35. Level curves (isothermals) are shown for the water temperature (in °C) in Long Lake (Minnesota) in 1998 as a function of depth and time of year. Estimate the temperature in the lake on June 9 (day 160) at a depth of 10 m and on June 29 (day 180) at a depth of 5 m.

36. Two contour maps are shown. One is for a function *f* whose graph is a cone. The other is for a function *g* whose graph is a paraboloid. Which is which, and why?

- **37.** Locate the points *A* and *B* on the map of Lonesome Mountain (Figure 12). How would you describe the terrain near *A*? Near *B*?
- **38.** Make a rough sketch of a contour map for the function whose graph is shown.

39–42 A contour map of a function is shown. Use it to make a rough sketch of the graph of f.

43–50 Draw a contour map of the function showing several level curves.

43. $f(x, y) = (y - 2x)^2$	44. $f(x, y) = x^3 - y$
45. $f(x, y) = \sqrt{x} + y$	46. $f(x, y) = \ln(x^2 + 4y^2)$
47. $f(x, y) = ye^x$	48. $f(x, y) = y \sec x$
49. $f(x, y) = \sqrt{y^2 - x^2}$	50. $f(x, y) = y/(x^2 + y^2)$

51–52 Sketch both a contour map and a graph of the function and compare them.

51.
$$f(x, y) = x^2 + 9y^2$$
 52. $f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$

53. A thin metal plate, located in the *xy*-plane, has temperature T(x, y) at the point (x, y). The level curves of *T* are called *isothermals* because at all points on such a curve the temperature is the same. Sketch some isothermals if the temperature function is given by

$$T(x, y) = \frac{100}{1 + x^2 + 2y^2}$$

54. If V(x, y) is the electric potential at a point (x, y) in the *xy*-plane, then the level curves of *V* are called *equipotential curves* because at all points on such a curve the electric potential is the same. Sketch some equipotential curves if $V(x, y) = c/\sqrt{r^2 - x^2 - y^2}$, where *c* is a positive constant.

55–58 Use a computer to graph the function using various domains and viewpoints. Get a printout of one that, in your opinion, gives a good view. If your software also produces level curves, then plot some contour lines of the same function and compare with the graph.

В

Π

55.
$$f(x, y) = xy^2 - x^3$$
 (monkey saddle)
56. $f(x, y) = xy^3 - yx^3$ (dog saddle)
57. $f(x, y) = e^{-(x^2+y^2)/3}(\sin(x^2) + \cos(y^2))$

58. $f(x, y) = \cos x \cos y$

59–64 Match the function (a) with its graph (labeled A–F below) and (b) with its contour map (labeled I–VI). Give reasons for your choices.

59.
$$z = \sin(xy)$$

60. $z = e^x \cos y$
61. $z = \sin(x - y)$
62. $z = \sin x - \sin y$
63. $z = (1 - x^2)(1 - y^2)$
64. $z = \frac{x - y}{1 + x^2 + y^2}$

65–68 Describe the level surfaces of the function.

65. f(x, y, z) = x + 3y + 5z **66.** $f(x, y, z) = x^2 + 3y^2 + 5z^2$ **67.** $f(x, y, z) = y^2 + z^2$ **68.** $f(x, y, z) = x^2 - y^2 - z^2$

69–70 Describe how the graph of g is obtained from the graph of f.

69. (a) g(x, y) = f(x, y) + 2(b) g(x, y) = 2f(x, y)(c) g(x, y) = -f(x, y)(d) g(x, y) = 2 - f(x, y) **70.** (a) g(x, y) = f(x - 2, y)(b) g(x, y) = f(x, y + 2)(c) g(x, y) = f(x + 3, y - 4)

71–72 Use a computer to graph the function using various domains and viewpoints. Get a printout that gives a good view of the "peaks and valleys." Would you say the function has a maximum value? Can you identify any points on the graph that you might consider to be "local maximum points"? What about "local minimum points"?

71.
$$f(x, y) = 3x - x^4 - 4y^2 - 10xy$$

72. $f(x, y) = xye^{-x^2 - y^2}$

73-74 Use a computer to graph the function using various domains and viewpoints. Comment on the limiting behavior of the function. What happens as both x and y become large? What happens as (x, y) approaches the origin?

73.
$$f(x, y) = \frac{x + y}{x^2 + y^2}$$
 74. $f(x, y) = \frac{xy}{x^2 + y^2}$

75. Use a computer to investigate the family of functions $f(x, y) = e^{cx^2+y^2}$. How does the shape of the graph depend on *c*?

14.2 Limits and Continuity

Let's compare the behavior of the functions

$$f(x, y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
 and $g(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$

as x and y both approach 0 [and therefore the point (x, y) approaches the origin]. Tables 1 and 2 show values of f(x, y) and g(x, y), correct to three decimal places, for points (x, y) near the origin. (Notice that neither function is defined at the origin.)

76. Use a computer to investigate the family of surfaces

$$z = (ax^2 + by^2)e^{-x^2-y}$$

How does the shape of the graph depend on the numbers a and b?

77. Use a computer to investigate the family of surfaces $z = x^2 + y^2 + cxy$. In particular, you should determine the transitional values of *c* for which the surface changes from one type of quadric surface to another.

78. Graph the functions

$$f(x, y) = \sqrt{x^2 + y^2}$$
$$f(x, y) = e^{\sqrt{x^2 + y^2}}$$
$$f(x, y) = \ln\sqrt{x^2 + y^2}$$
$$f(x, y) = \sin(\sqrt{x^2 + y^2})$$
$$f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$$

and

In general, if g is a function of one variable, how is the graph of

$$f(x, y) = g(\sqrt{x^2 + y^2})$$

obtained from the graph of g?

79. (a) Show that, by taking logarithms, the general Cobb-Douglas function $P = bL^{\alpha}K^{1-\alpha}$ can be expressed as

$$\ln\frac{P}{K} = \ln b + \alpha \ln\frac{L}{K}$$

- (b) If we let $x = \ln(L/K)$ and $y = \ln(P/K)$, the equation in part (a) becomes the linear equation $y = \alpha x + \ln b$. Use Table 2 (in Example 3) to make a table of values of $\ln(L/K)$ and $\ln(P/K)$ for the years 1899–1922. Then use a graphing calculator or computer to find the least squares regression line through the points $(\ln(L/K), \ln(P/K))$.
- (c) Deduce that the Cobb-Douglas production function is $P = 1.01L^{0.75}K^{0.25}$.