15.7 Triple Integrals

FIGURE 1

Just as we defined single integrals for functions of one variable and double integrals for functions of two variables, so we can define triple integrals for functions of three variables. Let's first deal with the simplest case where f is defined on a rectangular box:

$$
\begin{equation*}
B=\{(x, y, z) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d, r \leqslant z \leqslant s\} \tag{tabular}
\end{equation*}
$$

The first step is to divide B into sub-boxes. We do this by dividing the interval $[a, b]$ into l subintervals $\left[x_{i-1}, x_{i}\right]$ of equal width Δx, dividing $[c, d]$ into m subintervals of width Δy, and dividing $[r, s]$ into n subintervals of width Δz. The planes through the endpoints of these subintervals parallel to the coordinate planes divide the box B into $l m n$ sub-boxes

$$
B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right]
$$

which are shown in Figure 1. Each sub-box has volume $\Delta V=\Delta x \Delta y \Delta z$.
Then we form the triple Riemann sum

2

$$
\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

where the sample point $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ is in $B_{i j k}$. By analogy with the definition of a double integral (15.1.5), we define the triple integral as the limit of the triple Riemann sums in 2 .

3 Definition The triple integral of f over the box B is

$$
\iiint_{B} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

if this limit exists.

Again, the triple integral always exists if f is continuous. We can choose the sample point to be any point in the sub-box, but if we choose it to be the point $\left(x_{i}, y_{j}, z_{k}\right)$ we get a simpler-looking expression for the triple integral:

$$
\iiint_{B} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i}, y_{j}, z_{k}\right) \Delta V
$$

Just as for double integrals, the practical method for evaluating triple integrals is to express them as iterated integrals as follows.

4 Fubini's Theorem for Triple Integrals If f is continuous on the rectangular box $B=[a, b] \times[c, d] \times[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

The iterated integral on the right side of Fubini's Theorem means that we integrate first with respect to x (keeping y and z fixed), then we integrate with respect to y (keeping z fixed), and finally we integrate with respect to z. There are five other possible orders in

FIGURE 2
A type 1 solid region
which we can integrate, all of which give the same value. For instance, if we integrate with respect to y, then z, and then x, we have

$$
\iiint_{B} f(x, y, z) d V=\int_{a}^{b} \int_{r}^{s} \int_{c}^{d} f(x, y, z) d y d z d x
$$

V EXAMPLE 1 Evaluate the triple integral $\iiint_{B} x y z^{2} d V$, where B is the rectangular box given by

$$
B=\{(x, y, z) \mid 0 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 2,0 \leqslant z \leqslant 3\}
$$

SOLUTION We could use any of the six possible orders of integration. If we choose to integrate with respect to x, then y, and then z, we obtain

$$
\begin{aligned}
\iiint_{B} x y z^{2} d V & =\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} x y z^{2} d x d y d z=\int_{0}^{3} \int_{-1}^{2}\left[\frac{x^{2} y z^{2}}{2}\right]_{x=0}^{x=1} d y d z \\
& =\int_{0}^{3} \int_{-1}^{2} \frac{y z^{2}}{2} d y d z=\int_{0}^{3}\left[\frac{y^{2} z^{2}}{4}\right]_{y=-1}^{y=2} d z \\
& \left.=\int_{0}^{3} \frac{3 z^{2}}{4} d z=\frac{z^{3}}{4}\right]_{0}^{3}=\frac{27}{4}
\end{aligned}
$$

Now we define the triple integral over a general bounded region \boldsymbol{E} in threedimensional space (a solid) by much the same procedure that we used for double integrals (15.3.2). We enclose E in a box B of the type given by Equation 1. Then we define F so that it agrees with f on E but is 0 for points in B that are outside E. By definition,

$$
\iiint_{E} f(x, y, z) d V=\iiint_{B} F(x, y, z) d V
$$

This integral exists if f is continuous and the boundary of E is "reasonably smooth." The triple integral has essentially the same properties as the double integral (Properties 6-9 in Section 15.3).

We restrict our attention to continuous functions f and to certain simple types of regions. A solid region E is said to be of type $\mathbf{1}$ if it lies between the graphs of two continuous functions of x and y, that is,

$$
\begin{equation*}
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\} \tag{tabular}
\end{equation*}
$$

where D is the projection of E onto the $x y$-plane as shown in Figure 2. Notice that the upper boundary of the solid E is the surface with equation $z=u_{2}(x, y)$, while the lower boundary is the surface $z=u_{1}(x, y)$.

By the same sort of argument that led to (15.3.3), it can be shown that if E is a type 1 region given by Equation 5, then

6

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

The meaning of the inner integral on the right side of Equation 6 is that x and y are held fixed, and therefore $u_{1}(x, y)$ and $u_{2}(x, y)$ are regarded as constants, while $f(x, y, z)$ is integrated with respect to z.

FIGURE 3
A type 1 solid region where the projection D is a type I plane region

FIGURE 4
A type 1 solid region with a type II projection

FIGURE 5

FIGURE 6

In particular, if the projection D of E onto the $x y$-plane is a type I plane region (as in Figure 3), then

$$
E=\left\{(x, y, z) \mid a \leqslant x \leqslant b, g_{1}(x) \leqslant y \leqslant g_{2}(x), u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\}
$$

and Equation 6 becomes

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x
$$

If, on the other hand, D is a type II plane region (as in Figure 4), then

$$
E=\left\{(x, y, z) \mid c \leqslant y \leqslant d, h_{1}(y) \leqslant x \leqslant h_{2}(y), u_{1}(x, y) \leqslant z \leqslant u_{2}(x, y)\right\}
$$

and Equation 6 becomes

8

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d x d y
$$

EXAMPLE 2 Evaluate $\iiint_{E} z d V$, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, nd x at $y+z=1$.

SOLUTION When we set up a triple integral it's wise to draw two diagrams: one of the solid region E (see Figure 5) and one of its projection D onto the $x y$-plane (see Figure 6). The lower boundary of the tetrahedron is the plane $z=0$ and the upper boundary is the plane $x+y+z=1$ (or $z=1-x-y$), so we use $u_{1}(x, y)=0$ and $u_{2}(x, y)=1-x-y$ in Formula 7. Notice that the planes $x+y+z=1$ and $z=0$ intersect in the line $x+y=1$ (or $y=1-x$) in the $x y$-plane. So the projection of E is the triangular region shown in Figure 6, and we have

9

$$
E=\{(x, y, z) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1-x, 0 \leqslant z \leqslant 1-x-y\}
$$

This description of E as a type 1 region enables us to evaluate the integral as follows:

$$
\begin{aligned}
\iiint_{E} z d V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z d z d y d x=\int_{0}^{1} \int_{0}^{1-x}\left[\frac{z^{2}}{2}\right]_{z=0}^{z=1-x-y} d y d x \\
& =\frac{1}{2} \int_{0}^{1} \int_{0}^{1-x}(1-x-y)^{2} d y d x=\frac{1}{2} \int_{0}^{1}\left[-\frac{(1-x-y)^{3}}{3}\right]_{y=0}^{y=1-x} d x \\
& =\frac{1}{6} \int_{0}^{1}(1-x)^{3} d x=\frac{1}{6}\left[-\frac{(1-x)^{4}}{4}\right]_{0}^{1}=\frac{1}{24}
\end{aligned}
$$

A solid region E is of type 2 if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leqslant x \leqslant u_{2}(y, z)\right\}
$$

FIGURE 7
A type 2 region

FIGURE 8
A type 3 region

TEC Visual 15.7 illustrates how solid regions (including the one in Figure 9) project onto coordinate planes.
where, this time, D is the projection of E onto the $y z$-plane (see Figure 7). The back surface is $x=u_{1}(y, z)$, the front surface is $x=u_{2}(y, z)$, and we have

10

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A
$$

Finally, a type 3 region is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leqslant y \leqslant u_{2}(x, z)\right\}
$$

where D is the projection of E onto the $x z$-plane, $y=u_{1}(x, z)$ is the left surface, and $y=u_{2}(x, z)$ is the right surface (see Figure 8). For this type of region we have

$$
\begin{equation*}
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A \tag{11}
\end{equation*}
$$

In each of Equations 10 and 11 there may be two possible expressions for the integral depending on whether D is a type I or type II plane region (and corresponding to Equations 7 and 8).

V EXAMPLE 3 Evaluate $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
SOLUTION The solid E is shown in Figure 9. If we regard it as a type 1 region, then we need to consider its projection D_{1} onto the $x y$-plane, which is the parabolic region in Figure 10. (The trace of $y=x^{2}+z^{2}$ in the plane $z=0$ is the parabola $y=x^{2}$.)

FIGURE 9
Region of integration

FIGURE 10
Projection onto $x y$-plane

From $y=x^{2}+z^{2}$ we obtain $z= \pm \sqrt{y-x^{2}}$, so the lower boundary surface of E is $z=-\sqrt{y-x^{2}}$ and the upper surface is $z=\sqrt{y-x^{2}}$. Therefore the description of E as a type 1 region is

$$
E=\left\{(x, y, z) \mid-2 \leqslant x \leqslant 2, x^{2} \leqslant y \leqslant 4,-\sqrt{y-x^{2}} \leqslant z \leqslant \sqrt{y-x^{2}}\right\}
$$

and so we obtain

$$
\iiint_{E} \sqrt{x^{2}+z^{2}} d V=\int_{-2}^{2} \int_{x^{2}}^{4} \int_{-\sqrt{y-x^{2}}}^{\sqrt{y-x^{2}}} \sqrt{x^{2}+z^{2}} d z d y d x
$$

FIGURE 11
Projection onto $x z$-plane
0 The most difficult step in evaluating a triple integral is setting up an expression for the region of integration (such as Equation 9 in Example 2). Remember that the limits of integration in the inner integral contain at most two variables, the limits of integration in the middle integral contain at most one variable, and the limits of integration in the outer integral must be constants.

FIGURE 12
Projections of E

FIGURE 13
The solid E

Although this expression is correct, it is extremely difficult to evaluate. So let's instead consider E as a type 3 region. As such, its projection D_{3} onto the $x z$-plane is the disk $x^{2}+z^{2} \leqslant 4$ shown in Figure 11 .

Then the left boundary of E is the paraboloid $y=x^{2}+z^{2}$ and the right boundary is the plane $y=4$, so taking $u_{1}(x, z)=x^{2}+z^{2}$ and $u_{2}(x, z)=4$ in Equation 11, we have

$$
\iiint_{E} \sqrt{x^{2}+z^{2}} d V=\iint_{D_{3}}\left[\int_{x^{2}+z^{2}}^{4} \sqrt{x^{2}+z^{2}} d y\right] d A=\iint_{D_{3}}\left(4-x^{2}-z^{2}\right) \sqrt{x^{2}+z^{2}} d A
$$

Although this integral could be written as

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left(4-x^{2}-z^{2}\right) \sqrt{x^{2}+z^{2}} d z d x
$$

it's easier to convert to polar coordinates in the $x z$-plane: $x=r \cos \theta, z=r \sin \theta$. This gives

$$
\begin{aligned}
\iiint_{E} \sqrt{x^{2}+z^{2}} d V & =\iint_{D_{3}}\left(4-x^{2}-z^{2}\right) \sqrt{x^{2}+z^{2}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{2}\left(4 r^{2}-r^{4}\right) d r \\
& =2 \pi\left[\frac{4 r^{3}}{3}-\frac{r^{5}}{5}\right]_{0}^{2}=\frac{128 \pi}{15}
\end{aligned}
$$

EXAMPLE 4 Express the iterated integral $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x$ as a triple integral and then rewrite it as an iterated integral in a different order, integrating first with respect to x, then z, and then y.

SOLUTION We can write

$$
\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x=\iiint_{E} f(x, y, z) d V
$$

where $E=\left\{(x, y, z) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant x^{2}, 0 \leqslant z \leqslant y\right\}$. This description of E enables us to write projections onto the three coordinate planes as follows:

$$
\left.\begin{array}{ll}
\text { on the } x y \text {-plane: } & D_{1}=\left\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant x^{2}\right\} \\
& =\{(x, y) \mid 0 \leqslant y \leqslant 1, \sqrt{y} \leqslant x \leqslant 1\} \\
& \text { on the } y z \text {-plane: }
\end{array} \quad D_{2}=\{(x, y) \mid 0 \leqslant y \leqslant 1,0 \leqslant z \leqslant y\}\right\}
$$

From the resulting sketches of the projections in Figure 12 we sketch the solid E in Figure 13 . We see that it is the solid enclosed by the planes $z=0, x=1, y=z$ and the parabolic cylinder $y=x^{2}($ or $x=\sqrt{y})$.

If we integrate first with respect to x, then z, and then y, we use an alternate description of E :

$$
E=\{(x, y, z) \mid 0 \leqslant x \leqslant 1,0 \leqslant z \leqslant y, \sqrt{y} \leqslant x \leqslant 1\}
$$

Thus

$$
\iiint_{E} f(x, y, z) d V=\int_{0}^{1} \int_{0}^{y} \int_{\sqrt{y}}^{1} f(x, y, z) d x d z d y
$$

Applications of Triple Integrals

Recall that if $f(x) \geqslant 0$, then the single integral $\int_{a}^{b} f(x) d x$ represents the area under the curve $y=f(x)$ from a to b, and if $f(x, y) \geqslant 0$, then the double integral $\iint_{D} f(x, y) d A$ represents the volume under the surface $z=f(x, y)$ and above D. The corresponding interpretation of a triple integral $\iiint_{E} f(x, y, z) d V$, where $f(x, y, z) \geqslant 0$, is not very useful because it would be the "hypervolume" of a four-dimensional object and, of course, that is very difficult to visualize. (Remember that E is just the domain of the function f; the graph of f lies in four-dimensional space.) Nonetheless, the triple integral $\iiint_{E} f(x, y, z) d V$ can be interpreted in different ways in different physical situations, depending on the physical interpretations of x, y, z, and $f(x, y, z)$.

Let's begin with the special case where $f(x, y, z)=1$ for all points in E. Then the triple integral does represent the volume of E :

12

$$
V(E)=\iiint_{E} d V
$$

For example, you can see this in the case of a type 1 region by putting $f(x, y, z)=1$ in Formula 6:

$$
\iiint_{E} 1 d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} d z\right] d A=\iint_{D}\left[u_{2}(x, y)-u_{1}(x, y)\right] d A
$$

and from Section 15.3 we know this represents the volume that lies between the surfaces $z=u_{1}(x, y)$ and $z=u_{2}(x, y)$.

EXAMPLE 5 Use a triple integral to find the volume of the tetrahedron T bounded by the planes $x+2 y+z=2, x=2 y, x=0$, and $z=0$.

SOLUTION The tetrahedron T and its projection D onto the $x y$-plane are shown in Figures 14 and 15 . The lower boundary of T is the plane $z=0$ and the upper boundary is the plane $x+2 y+z=2$, that is, $z=2-x-2 y$.

FIGURE 14

FIGURE 15

Therefore we have

$$
\begin{aligned}
V(T) & =\iiint_{T} d V=\int_{0}^{1} \int_{x / 2}^{1-x / 2} \int_{0}^{2-x-2 y} d z d y d x \\
& =\int_{0}^{1} \int_{x / 2}^{1-x / 2}(2-x-2 y) d y d x=\frac{1}{3}
\end{aligned}
$$

by the same calculation as in Example 4 in Section 15.3.
(Notice that it is not necessary to use triple integrals to compute volumes. They simply give an alternative method for setting up the calculation.)

All the applications of double integrals in Section 15.5 can be immediately extended to triple integrals. For example, if the density function of a solid object that occupies the region E is $\rho(x, y, z)$, in units of mass per unit volume, at any given point (x, y, z), then its mass is

$$
\begin{equation*}
m=\iiint_{E} \rho(x, y, z) d V \tag{13}
\end{equation*}
$$

and its moments about the three coordinate planes are

$$
\begin{gather*}
M_{y z}=\iiint_{E} x \rho(x, y, z) d V \quad M_{x z}=\iiint_{E} y \rho(x, y, z) d V \tag{14}\\
M_{x y}=\iiint_{E} z \rho(x, y, z) d V
\end{gather*}
$$

The center of mass is located at the point $(\bar{x}, \bar{y}, \bar{z})$, where

$$
\begin{equation*}
\bar{x}=\frac{M_{y z}}{m} \quad \bar{y}=\frac{M_{x z}}{m} \quad \bar{z}=\frac{M_{x y}}{m} \tag{15}
\end{equation*}
$$

If the density is constant, the center of mass of the solid is called the centroid of E. The moments of inertia about the three coordinate axes are

$$
\begin{gather*}
I_{x}=\iiint_{E}\left(y^{2}+z^{2}\right) \rho(x, y, z) d V \quad I_{y}=\iiint_{E}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V \tag{tabular}\\
I_{z}=\iiint_{E}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V
\end{gather*}
$$

As in Section 15.5, the total electric charge on a solid object occupying a region E and having charge density $\sigma(x, y, z)$ is

$$
Q=\iiint_{E} \sigma(x, y, z) d V
$$

If we have three continuous random variables X, Y, and Z, their joint density function is a function of three variables such that the probability that (X, Y, Z) lies in E is

$$
P((X, Y, Z) \in E)=\iiint_{E} f(x, y, z) d V
$$

In particular,

$$
P(a \leqslant X \leqslant b, c \leqslant Y \leqslant d, r \leqslant Z \leqslant s)=\int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) d z d y d x
$$

The joint density function satisfies

$$
f(x, y, z) \geqslant 0 \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d z d y d x=1
$$

FIGURE 16

EXAMPLE 6 Find the center of mass of a solid of constant density that is bounded by the parabolic cylinder $x=y^{2}$ and the planes $x=z, z=0$, and $x=1$.
SOLUTION The solid E and its projection onto the $x y$-plane are shown in Figure 16. The lower and upper surfaces of E are the planes $z=0$ and $z=x$, so we describe E as a type 1 region:

$$
E=\left\{(x, y, z) \mid-1 \leqslant y \leqslant 1, y^{2} \leqslant x \leqslant 1,0 \leqslant z \leqslant x\right\}
$$

Then, if the density is $\rho(x, y, z)=\rho$, the mass is

$$
\begin{aligned}
m & =\iiint_{E} \rho d V=\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} \rho d z d x d y \\
& =\rho \int_{-1}^{1} \int_{y^{2}}^{1} x d x d y=\rho \int_{-1}^{1}\left[\frac{x^{2}}{2}\right]_{x=y^{2}}^{x=1} d y \\
& =\frac{\rho}{2} \int_{-1}^{1}\left(1-y^{4}\right) d y=\rho \int_{0}^{1}\left(1-y^{4}\right) d y
\end{aligned}
$$

$$
=\rho\left[y-\frac{y^{5}}{5}\right]_{0}^{1}=\frac{4 \rho}{5}
$$

Because of the symmetry of E and ρ about the $x z$-plane, we can immediately say that $M_{x z}=0$ and therefore $\bar{y}=0$. The other moments are

$$
\begin{aligned}
M_{y z} & =\iiint_{E} x \rho d V=\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} x \rho d z d x d y \\
& =\rho \int_{-1}^{1} \int_{y^{2}}^{1} x^{2} d x d y=\rho \int_{-1}^{1}\left[\frac{x^{3}}{3}\right]_{x=y^{2}}^{x=1} d y \\
& =\frac{2 \rho}{3} \int_{0}^{1}\left(1-y^{6}\right) d y=\frac{2 \rho}{3}\left[y-\frac{y^{7}}{7}\right]_{0}^{1}=\frac{4 \rho}{7} \\
M_{x y} & =\iiint_{E} z \rho d V=\int_{-1}^{1} \int_{y^{2}}^{1} \int_{0}^{x} z \rho d z d x d y \\
& =\rho \int_{-1}^{1} \int_{y^{2}}^{1}\left[\frac{z^{2}}{2}\right]_{z=0}^{z=x} d x d y=\frac{\rho}{2} \int_{-1}^{1} \int_{y^{2}}^{1} x^{2} d x d y \\
& =\frac{\rho}{3} \int_{0}^{1}\left(1-y^{6}\right) d y=\frac{2 \rho}{7}
\end{aligned}
$$

Therefore the center of mass is

$$
(\bar{x}, \bar{y}, \bar{z})=\left(\frac{M_{y z}}{m}, \frac{M_{x z}}{m}, \frac{M_{x y}}{m}\right)=\left(\frac{5}{7}, 0, \frac{5}{14}\right)
$$

1. Evaluate the integral in Example 1, integrating first with respect to y, then z, and then x.
2. Evaluate the integral $\iiint_{E}\left(x y+z^{2}\right) d V$, where

$$
E=\{(x, y, z) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 3\}
$$

using three different orders of integration.
3-8 Evaluate the iterated integral.
3. $\int_{0}^{2} \int_{0}^{z^{2}} \int_{0}^{y-z}(2 x-y) d x d y d z$
4. $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x$
5. $\int_{1}^{2} \int_{0}^{2 z} \int_{0}^{\ln x} x e^{-y} d y d x d z$
6. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \frac{z}{y+1} d x d z d y$
7. $\int_{0}^{\pi / 2} \int_{0}^{y} \int_{0}^{x} \cos (x+y+z) d z d x d y$
8. $\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \int_{0}^{x z} x^{2} \sin y d y d z d x$

9-18 Evaluate the triple integral.
9. $\iint_{E} y d V$, where
$E=\{(x, y, z) \mid 0 \leqslant x \leqslant 3,0 \leqslant y \leqslant x, x-y \leqslant z \leqslant x+y\}$
10. $\iiint_{E} e^{z / y} d V$, where
$E=\{(x, y, z) \mid 0 \leqslant y \leqslant 1, y \leqslant x \leqslant 1,0 \leqslant z \leqslant x y\}$
11. $\iiint_{E} \frac{z}{x^{2}+z^{2}} d V$, where
$E=\{(x, y, z) \mid 1 \leqslant y \leqslant 4, y \leqslant z \leqslant 4,0 \leqslant x \leqslant z\}$
12. $\iiint_{E} \sin y d V$, where E lies below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0)$, and $(0, \pi, 0)$
13. $\iiint_{E} 6 x y d V$, where E lies under the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=\sqrt{x}, y=0$, and $x=1$
14. $\iiint_{E} x y d V$, where E is bounded by the parabolic cylinders $y=x^{2}$ and $x=y^{2}$ and the planes $z=0$ and $z=x+y$
15. $\iiint_{T} x^{2} d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$
16. $\iiint_{T} x y z d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0)$, and $(1,0,1)$
17. $\iiint_{E} x d V$, where E is bounded by the paraboloid $x=4 y^{2}+4 z^{2}$ and the plane $x=4$
18. $\iiint_{E} z d V$, where E is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x$, and $z=0$ in the first octant

19-22 Use a triple integral to find the volume of the given solid.
19. The tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$
20. The solid enclosed by the paraboloids $y=x^{2}+z^{2}$ and $y=8-x^{2}-z^{2}$
21. The solid enclosed by the cylinder $y=x^{2}$ and the planes $z=0$ and $y+z=1$
22. The solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$
23. (a) Express the volume of the wedge in the first octant that is cut from the cylinder $y^{2}+z^{2}=1$ by the planes $y=x$ and $x=1$ as a triple integral.
(b) Use either the Table of Integrals (on Reference Pages 6-10) or a computer algebra system to find the exact value of the triple integral in part (a).
24. (a) In the Midpoint Rule for triple integrals we use a triple Riemann sum to approximate a triple integral over a box B, where $f(x, y, z)$ is evaluated at the center $\left(\bar{x}_{i}, \bar{y}_{j}, \bar{z}_{k}\right)$ of the box $B_{i j k}$. Use the Midpoint Rule to estimate $\iiint_{B} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where B is the cube defined by $0 \leqslant x \leqslant 4,0 \leqslant y \leqslant 4,0 \leqslant z \leqslant 4$. Divide B into eight cubes of equal size.
(b) Use a computer algebra system to approximate the integral in part (a) correct to the nearest integer. Compare with the answer to part (a).

25-26 Use the Midpoint Rule for triple integrals (Exercise 24) to estimate the value of the integral. Divide B into eight sub-boxes of equal size.
25. $\iiint_{B} \cos (x y z) d V$, where

$$
B=\{(x, y, z) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 1\}
$$

26. $\iiint_{B} \sqrt{x} e^{x y z} d V$, where
$B=\{(x, y, z) \mid 0 \leqslant x \leqslant 4,0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 2\}$

27-28 Sketch the solid whose volume is given by the iterated integral.
27. $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 z} d y d z d x$
28. $\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} d x d z d y$

29-32 Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in six different ways, where E is the solid bounded by the given surfaces.
29. $y=4-x^{2}-4 z^{2}, \quad y=0$

